Suppr超能文献

地下 WLAN 自适应无线电指纹数据库的研究与应用。

Research and Application of Underground WLAN Adaptive Radio Fingerprint Database.

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221000, China.

出版信息

Sensors (Basel). 2020 Feb 21;20(4):1182. doi: 10.3390/s20041182.

Abstract

Fingerprint positioning based on WiFi in coal mines has received much attention because of the widespread application of WiFi. Fingerprinting techniques have developed rapidly due to the efforts of many researchers. However, the off-line construction of the radio fingerprint database is a tedious and time-consuming process. When the underground environments change, it may be necessary to update the signal received signal strength indication (RSSI) of all reference points, which will affect the normal working of a personnel positioning system. To solve this problem, an adaptive construction and update method based on a quantum-behaved particle swarm optimization-user-location trajectory feedback (QPSO-ULTF) for a radio fingerprint database is proposed. The principle of ULTF is that the mobile terminal records and uploads the related dataset in the process of user's walking, and it forms the user-location track with RSSI through the analysis and processing of the positioning system server. QPSO algorithm is used for the optimal radio fingerprint match between the RSSI of the access point (AP) contained in the dataset of user-location track and the calibration samples to achieve the adaptive generation and update of the radio fingerprint samples. The experimental results show that the radio fingerprint database generated by the QPSO-ULTF is similar to the traditional radio fingerprint database in the statistical distribution characteristics of the signal received signal strength (RSS) at each reference point. Therefore, the adaptive radio fingerprint database can replace the traditional radio fingerprint database. The comparable results of well-known traditional positioning methods demonstrate that the radio fingerprint database generated or updated by the QPSO-ULTF has a good positioning effect, which can ensure the normal operation of a personnel positioning system.

摘要

基于 WiFi 的煤矿指纹定位因其在 WiFi 中的广泛应用而备受关注。由于许多研究人员的努力,指纹识别技术得到了快速发展。然而,无线电指纹数据库的离线构建是一个繁琐且耗时的过程。当下 地下环境发生变化时,可能需要更新所有参考点的接收信号强度指示 (RSSI),这将影响人员定位系统的正常工作。为了解决这个问题,提出了一种基于量子行为粒子群优化-用户位置轨迹反馈(QPSO-ULTF)的无线电指纹数据库自适应构建和更新方法。ULTF 的原理是移动终端在用户行走过程中记录并上传相关数据集,并通过定位系统服务器的分析和处理,形成包含 RSSI 的用户位置轨迹。QPSO 算法用于对用户位置轨迹数据集和校准样本中包含的接入点 (AP) 的 RSSI 进行最佳无线电指纹匹配,以实现无线电指纹样本的自适应生成和更新。实验结果表明,QPSO-ULTF 生成的无线电指纹数据库在每个参考点的信号接收信号强度 (RSS) 的统计分布特征上与传统的无线电指纹数据库相似。因此,自适应无线电指纹数据库可以替代传统的无线电指纹数据库。与知名传统定位方法相当的结果表明,QPSO-ULTF 生成或更新的无线电指纹数据库具有良好的定位效果,可以确保人员定位系统的正常运行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/295b/7071092/445f5c2e7c27/sensors-20-01182-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验