Suppr超能文献

用于光氧化还原催化的纳米级硼碳氮化物半导体

Nanoscale boron carbonitride semiconductors for photoredox catalysis.

作者信息

Zheng Meifang, Cai Wancang, Fang Yuanxing, Wang Xinchen

机构信息

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, China.

出版信息

Nanoscale. 2020 Feb 14;12(6):3593-3604. doi: 10.1039/c9nr09333h. Epub 2020 Feb 5.

Abstract

The conversion of solar energy to chemical energy achieved by photocatalysts comprising homogeneous transition-metal based systems, organic dyes, or semiconductors has received significant attention in recent years. Among these photocatalysts, boron carbon nitride (BCN) materials, as an emerging class of metal-free heterogeneous semiconductors, have extended the scope of photocatalysts due to their good performance and Earth abundance. The combination of boron (B), carbon (C), and nitrogen (N) constitutes a ternary system with large surface area and abundant activity sites, which together contribute to the good performance for reduction reactions, oxidation reactions and orchestrated both reduction and oxidation reactions. This Minireview reports the methods for the synthesis of nanoscale hexagonal boron carbonitride (h-BCN) and describes the latest advances in the application of h-BCN materials as semiconductor photocatalysts for sustainable photosynthesis, such as water splitting, reduction of CO, acceptorless dehydrogenation, oxidation of sp C-H bonds, and sp C-H functionalization. h-BCN materials may have potential for applications in other organic transformations and industrial manufacture in the future.

摘要

近年来,通过包含均相过渡金属基体系、有机染料或半导体的光催化剂将太阳能转化为化学能受到了广泛关注。在这些光催化剂中,硼碳氮化物(BCN)材料作为一类新兴的无金属多相半导体,因其良好的性能和在地壳中的丰富储量而扩展了光催化剂的范围。硼(B)、碳(C)和氮(N)的组合构成了一个具有大表面积和丰富活性位点的三元体系,这些共同促成了其在还原反应、氧化反应以及协同还原和氧化反应方面的良好性能。本综述报告了纳米级六方硼碳氮化物(h-BCN)的合成方法,并描述了h-BCN材料作为半导体光催化剂用于可持续光合作用(如水分解、CO还原、无受体脱氢、sp C-H键氧化和sp C-H官能化)的最新进展。h-BCN材料未来可能在其他有机转化和工业制造中具有应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验