Suppr超能文献

同日遥感数据在冬季覆盖作物生物物理特性测量中的对比分析。

Intercomparison of Same-Day Remote Sensing Data for Measuring Winter Cover Crop Biophysical Traits.

机构信息

Sustainable Agricultural Systems Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Bldg 001, BARC-W, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.

Department of Geographical Sciences, University of Maryland, 2181 Samuel J. LeFrak Hall, College Park, MD 20742, USA.

出版信息

Sensors (Basel). 2024 Apr 6;24(7):2339. doi: 10.3390/s24072339.

Abstract

Winter cover crops are planted during the fall to reduce nitrogen losses and soil erosion and improve soil health. Accurate estimations of winter cover crop performance and biophysical traits including biomass and fractional vegetative groundcover support accurate assessment of environmental benefits. We examined the comparability of measurements between ground-based and spaceborne sensors as well as between processing levels (e.g., surface vs. top-of-atmosphere reflectance) in estimating cover crop biophysical traits. This research examined the relationships between SPOT 5, Landsat 7, and WorldView-2 same-day paired satellite imagery and handheld multispectral proximal sensors on two days during the 2012-2013 winter cover crop season. We compared two processing levels from three satellites with spatially aggregated proximal data for red and green spectral bands as well as the normalized difference vegetation index (NDVI). We then compared NDVI estimated fractional green cover to in-situ photographs, and we derived cover crop biomass estimates from NDVI using existing calibration equations. We used slope and intercept contrasts to test whether estimates of biomass and fractional green cover differed statistically between sensors and processing levels. Compared to top-of-atmosphere imagery, surface reflectance imagery were more closely correlated with proximal sensors, with intercepts closer to zero, regression slopes nearer to the 1:1 line, and less variance between measured values. Additionally, surface reflectance NDVI derived from satellites showed strong agreement with passive handheld multispectral proximal sensor-sensor estimated fractional green cover and biomass (adj. = 0.96 and 0.95; RMSE = 4.76% and 259 kg ha, respectively). Although active handheld multispectral proximal sensor-sensor derived fractional green cover and biomass estimates showed high accuracies ( = 0.96 and 0.96, respectively), they also demonstrated large intercept offsets (-25.5 and 4.51, respectively). Our results suggest that many passive multispectral remote sensing platforms may be used interchangeably to assess cover crop biophysical traits whereas SPOT 5 required an adjustment in NDVI intercept. Active sensors may require separate calibrations or intercept correction prior to combination with passive sensor data. Although surface reflectance products were highly correlated with proximal sensors, the standardized cloud mask failed to completely capture cloud shadows in Landsat 7, which dampened the signal of NIR and red bands in shadowed pixels.

摘要

冬季覆盖作物在秋季种植,以减少氮素损失和土壤侵蚀,改善土壤健康。准确估计冬季覆盖作物的表现和生物物理特征,包括生物量和植被覆盖度,有助于准确评估其环境效益。本研究探讨了地面和星载传感器之间以及处理级别(如地表与大气顶部反射率)之间在估算覆盖作物生物物理特征方面的测量值的可比性。本研究在 2012-2013 年冬季覆盖作物季节的两天内,利用 2012-2013 年冬季覆盖作物季节期间 SPOT 5、Landsat 7 和 WorldView-2 同一天配对卫星图像以及手持式多光谱近地传感器,检验了两种处理级别的关系。我们将三种卫星的两个处理级别与红、绿光谱波段和归一化植被指数(NDVI)的空间聚合近地数据进行了比较。然后,我们将 NDVI 估算的绿色覆盖比例与现场照片进行了比较,并使用现有的校准方程从 NDVI 中得出覆盖作物生物量估算值。我们使用斜率和截距对比来检验生物量和绿色覆盖比例在传感器和处理级别之间是否存在统计学差异。与大气顶部图像相比,地表反射率图像与近地传感器的相关性更强,截距更接近零,回归线斜率更接近 1:1 线,测量值之间的方差更小。此外,卫星衍生的地表反射率 NDVI 与被动手持式多光谱近地传感器传感器估算的绿色覆盖比例和生物量(adj. = 0.96 和 0.95;RMSE = 4.76% 和 259 kg ha,分别)具有很强的一致性。尽管主动手持式多光谱近地传感器传感器衍生的绿色覆盖比例和生物量估算值具有很高的准确性(分别为 = 0.96 和 0.96),但它们也显示出较大的截距偏移(分别为-25.5 和 4.51)。我们的结果表明,许多被动多光谱遥感平台可以互换使用来评估覆盖作物的生物物理特征,而 SPOT 5 需要对 NDVI 截距进行调整。主动传感器可能需要单独校准或截距校正,然后才能与被动传感器数据结合使用。尽管地表反射率产品与近地传感器高度相关,但标准化云掩膜未能完全捕捉 Landsat 7 中的云影,从而降低了阴影像素中近红外和红光波段的信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验