Han Victor, Liu Chunlei
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California, USA.
Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA.
Magn Reson Med. 2020 Sep;84(3):1184-1197. doi: 10.1002/mrm.28186. Epub 2020 Feb 5.
To develop a classical geometric interpretation of multiphoton excitation and apply it to MRI. To investigate ways in which multiphoton excitation can enable novel imaging techniques.
We present a fully geometric view of multiphoton excitation by taking a particular rotating frame transformation. In this rotating frame, we find that multiphoton excitations appear just like single-photon excitations again, and therefore, we can readily generalize concepts already explored in standard single-photon excitation. With a homebuilt low frequency coil, we execute a standard slice selective pulse sequence with all of its excitations replaced by their equivalent two-photon versions. In the case of no extra hardware, we use oscillating gradients as a source of extra photons for excitation. Finally, with the multiphoton interpretation of oscillating gradients, we present a novel way to transform a standard slice selective adiabatic inversion pulse into a multiband version without modifying the RF pulse itself. The addition of oscillating gradients creates multiphoton resonances at multiple spatial locations and allows for adiabatic inversions at each location.
With Bloch-Siegert shift corrections, analytical multiphoton excitation expressions match with Bloch equation simulations. Two-photon gradient-echo images of a lemon and a pork rib match with their single-photon counterparts. Frequency-offset RF combined with oscillating gradients generate excitation where the RF alone does not.
The multiphoton interpretation presents new flexibilities for imaging. Excitation needs not be bound to the Larmor frequency, which opens doors to RF pulse design beyond the usual filter design and the potential for further imaging innovations.
开发多光子激发的经典几何解释并将其应用于磁共振成像(MRI)。研究多光子激发能够实现新型成像技术的方式。
通过进行特定的旋转框架变换,我们给出了多光子激发的完整几何视图。在这个旋转框架中,我们发现多光子激发再次表现得如同单光子激发,因此,我们可以轻松地推广在标准单光子激发中已经探讨过的概念。使用自制的低频线圈,我们执行一个标准的切片选择脉冲序列,其中所有激发都被其等效的双光子版本所取代。在没有额外硬件的情况下,我们使用振荡梯度作为额外光子的激发源。最后,基于振荡梯度的多光子解释,我们提出了一种新颖的方法,无需修改射频(RF)脉冲本身,就能将标准的切片选择绝热反转脉冲转换为多频段版本。振荡梯度的添加在多个空间位置产生多光子共振,并允许在每个位置进行绝热反转。
经过布洛赫 - 西格特位移校正后,多光子激发的解析表达式与布洛赫方程模拟结果相匹配。柠檬和猪肋骨的双光子梯度回波图像与其单光子对应图像相匹配。频率偏移RF与振荡梯度相结合能产生仅靠RF无法产生的激发。
多光子解释为成像带来了新的灵活性。激发不必局限于拉莫尔频率,这为超出常规滤波器设计的RF脉冲设计以及进一步的成像创新潜力打开了大门。