Du Yuncheng, Zhou Weidong, Gao Jian, Pan Xiangyu, Li Yuliang
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China.
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.
Acc Chem Res. 2020 Feb 18;53(2):459-469. doi: 10.1021/acs.accounts.9b00558. Epub 2020 Feb 5.
The artificial synthesis of graphdiyne (GDY) in 2010 successfully fills the blank of low temperature preparation of all-carbon allotropes. GDY is an emerging two-dimensional (2D) planar carbon material composed of benzene rings moieties (sp carbon atoms), butadiyne (sp carbon atoms) linkers, and well dispersed electron-rich cavities, forming a large π-conjunction structure. GDY has attracted increasing attention in many fields. GDY is the first carbon material with both 2D fast transfer channels for electrons and 3D channels for ions. The 2D electron-rich all-carbon nature endows GDY with considerable conductivity and tunable electronic properties, and the in-plane cavities give it intrinsic selectivity and accessibility for electrochemically active metal ions. In addition, its easy preparation under mild conditions well complements the disadvantages of the traditional sp-hybridized carbon materials (carbon nanotubes, graphene, and graphite) in the highly efficient synthesis and processing for potential electrochemical applications. As an all-carbon material, the unique advantages of GDY in both structure and preparation match well the urgent demands in key materials for solving many challenging problems in recent electrochemical areas and beyond. During the last decade since the first preparation of GDY, it has already achieved much enlightening and creative progress in both fundamental scientific research and forward-looking applications. This Account is intended not to summarize all this progress in preparation and applications but to outline some newly reported interesting phenomena in both high-quality preparation and electrochemical applications. This Account mainly discusses the recent progress in electrochemical applications: (i) constructing new concepts and new functions in electrochemical interfaces for realizing highly active electrochemical catalysts in the fields of water splitting and oxygen reduction reaction and (ii) building a highly stable conductive network and electrochemical interface for reversible energy storage. In the field of electrochemical catalysis, based on current studies of structural advantages and superior performance, atomic catalysis with metal atoms anchored in GDY is encouraging, owing to the desirable immobilizing capability of electron-rich dialkyne cavities toward metal atoms and corresponding electron transfer. For high-energy batteries, the in situ growth of the all-carbon GDY on the various battery electrodes shows great promise for solving key practical problems (safety, long lifespan, high power), which are ascribed to weak interfacial stability. In addition, the perspective application of GDY to broader interfacial modifications is described, bringing new choices for solving the interfacial challenges in various energy storage devices.
2010年石墨炔(GDY)的人工合成成功填补了全碳同素异形体低温制备的空白。GDY是一种新兴的二维(2D)平面碳材料,由苯环部分(sp碳原子)、丁二炔(sp碳原子)连接基和分布均匀的富电子空穴组成,形成了一个大的π共轭结构。GDY在许多领域引起了越来越多的关注。GDY是第一种同时具有二维电子快速传输通道和三维离子通道的碳材料。二维富碳的全碳性质赋予了GDY可观的导电性和可调节的电子特性,面内空穴赋予了它对电化学活性金属离子的固有选择性和可及性。此外,它在温和条件下易于制备,很好地弥补了传统sp杂化碳材料(碳纳米管、石墨烯和石墨)在潜在电化学应用的高效合成和加工方面的缺点。作为一种全碳材料,GDY在结构和制备方面的独特优势与解决近期电化学领域及其他领域许多具有挑战性问题的关键材料的迫切需求非常匹配。自首次制备GDY以来的过去十年中,它在基础科学研究和前瞻性应用方面都取得了许多具有启发性和创造性的进展。本综述并非旨在总结其在制备和应用方面的所有进展,而是概述在高质量制备和电化学应用方面一些新报道的有趣现象。本综述主要讨论电化学应用方面的最新进展:(i)在电化学界面构建新概念和新功能,以实现水分解和氧还原反应领域的高活性电化学催化剂;(ii)构建用于可逆能量存储的高度稳定的导电网络和电化学界面。在电化学催化领域,基于目前对结构优势和优异性能的研究,由于富电子二炔空穴对金属原子具有理想的固定能力以及相应的电子转移,将金属原子锚定在GDY中的原子催化令人鼓舞。对于高能电池,全碳GDY在各种电池电极上的原位生长对于解决关键实际问题(安全性、长寿命、高功率)显示出巨大潜力,这些问题归因于界面稳定性较弱。此外,还描述了GDY在更广泛的界面修饰方面的潜在应用,为解决各种能量存储设备中的界面挑战带来了新的选择。