New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA.
New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, 11794, USA; Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
Water Res. 2020 Apr 15;173:115534. doi: 10.1016/j.watres.2020.115534. Epub 2020 Jan 25.
In this study, a semi-batch, bench-scale UV/hydrogen peroxide (UV/HO) advanced oxidation process system was used to investigate how typical groundwater quality parameters (pH, alkalinity, natural organic matter (NOM), nitrate, and iron) influence the treatment of 1,4-dioxane. Deionized (DI) water spiked with 1,4-dioxane (100 μg L), treated using HO (10 mg L) in a commercially available UV system (40 W low-pressure lamp) showed an UV fluence-based first-order rate constant (k') and electrical energy-per-order (EEO) of 4.32✕10 cm-mJ and 0.15 kWh-m-order, respectively. The most abundant byproduct generated in spiked-DI water was oxalic acid (up to 55 μg L), followed by formic and acetic acids. The k' showed no significant difference at pH ranging from 5 to 7 and at low alkalinity concentrations (<20 mg-CaCO L), typical of sandy aquifers. The k' declined by up to 85% with increasing NOM concentration. Elevated production (up to ∼400% increase) of aldehydes and organic acids was observed in NOM-spiked water, implying that NOM is a significant byproduct precursor during UV/HO treatment. High NO concentration (10 mg-N L) in source water reduced the k' by 25%, while no significant impact was observed at lower concentrations (<2 mg-N L). Addition of Fe(II) at 0.5 mg-L resulted in an instantaneous Fenton-reaction-assisted removal of ∼10% 1,4-dioxane in the presence of HO, but did not enhance the performance of UV/HO treatment over time. In contrast, both Fe(II) and Fe(III) addition lowered the k' by 15-27%. The decline of k' observed in these experiments was attributed to reduced UVT (Fe), OH radical scavenging (pH), or both (NO, NOM). Treatment of groundwater samples collected from three 1,4-dioxane-contaminated wells located in Long Island, NY, showed k' values of 13-40% lower than what was observed for DI water due to radical scavenging from a combination of high NO and NOM in the samples. A multiple linear-regression model, developed using water quality data as model input, showed good agreement with field observations (paired t-test: p > 0.05) in predicting k' for the removal of 1,4-dioxane from groundwater. This study provides the first systematic evaluation of the impacts of groundwater quality on UV/HO process to remove environmentally relevant levels of 1,4-dioxane and reports standardized performance-related parameters to aid in the design and evaluation of full-scale systems.
在这项研究中,使用半分批、台式紫外线/过氧化氢(UV/HO)高级氧化工艺系统来研究典型的地下水质量参数(pH 值、碱度、天然有机物(NOM)、硝酸盐和铁)如何影响 1,4-二恶烷的处理。在商业上可用的紫外线系统(40 W 低压灯)中,用 HO(10 mg/L)处理用去离子(DI)水(100μg/L 1,4-二恶烷),表现出基于紫外线剂量的一级速率常数(k')和每阶电量(EEO)分别为 4.32✕10 cm-mJ 和 0.15 kWh-m-order。在 DI 水中生成的最丰富的副产物是草酸(高达 55μg/L),其次是甲酸和乙酸。在 pH 值为 5 到 7 和低碱度浓度(<20 mg-CaCO3/L)范围内,k' 没有明显差异,这是沙质含水层的典型特征。当 NOM 浓度增加时,k' 下降了多达 85%。在 NOM 污染的水中观察到醛和有机酸的产量(高达增加了约 400%)增加,这意味着 NOM 是 UV/HO 处理过程中重要的副产物前体。源水中高浓度的 NO(10 mg-N/L)使 k'降低了 25%,而在较低浓度(<2 mg-N/L)下则没有观察到明显的影响。在 HO 存在下,添加 0.5 mg/L 的 Fe(II)会立即进行芬顿反应辅助去除约 10%的 1,4-二恶烷,但不会随着时间的推移增强 UV/HO 处理的性能。相比之下,Fe(II)和 Fe(III)的添加都会使 k'降低 15-27%。实验中观察到的 k'下降归因于 UVT(Fe)减少、OH 自由基清除(pH)或两者(NO、NOM)。由于水样中高浓度的 NO 和 NOM 的共同作用,从位于纽约长岛的三个受 1,4-二恶烷污染的井中采集的地下水样品的处理表明,k'值比 DI 水低 13-40%。使用水质数据作为模型输入开发的多元线性回归模型与现场观测结果吻合良好(配对 t 检验:p>0.05),可以预测从地下水中去除 1,4-二恶烷的 k'值。本研究首次系统评估了地下水质量对 UV/HO 工艺去除环境相关水平的 1,4-二恶烷的影响,并报告了标准化的与性能相关的参数,以帮助设计和评估全尺寸系统。