Grube Mandy, Cinar Gizem, Schubert Ulrich S, Nischang Ivo
Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
Polymers (Basel). 2020 Jan 31;12(2):277. doi: 10.3390/polym12020277.
The interrelation of experimental rotational and translational hydrodynamic friction data as a basis for the study of macromolecules in solution represents a useful attempt for the verification of hydrodynamic information. Such interrelation originates from the basic development of colloid and macromolecular science and has proven to be a powerful tool for the study of naturally- and synthetically-based, i.e., artificial, macromolecules. In this tutorial review, we introduce this very basic concept with a brief historical background, the governing physical principles, and guidelines for anyone making use of it. This is because very often data to determine such an interrelation are available and it only takes a set of simple equations for it to be established. We exemplify this with data collected over recent years, focused primarily on water-based macromolecular systems and with relevance for pharmaceutical applications. We conclude with future incentives and opportunities for verifying an advanced design and tailored properties of natural/synthetic macromolecular materials in a dispersed or dissolved manner, i.e., in solution. Particular importance for the here outlined concept emanates from the situation that the classical scaling relationships of Kuhn-Mark-Houwink-Sakurada, most frequently applied in macromolecular science, are fulfilled, once the hydrodynamic invariant and/or sedimentation parameter are established. However, the hydrodynamic invariant and sedimentation parameter concept do not require a series of molar masses for their establishment and can help in the verification of a sound estimation of molar mass values of macromolecules.
作为研究溶液中大分子的基础,实验性旋转和平动流体动力学摩擦数据之间的相互关系是验证流体动力学信息的一次有益尝试。这种相互关系源于胶体和大分子科学的基本发展,并且已被证明是研究天然和合成(即人工)大分子的有力工具。在本教程综述中,我们将介绍这个非常基本的概念,包括简短的历史背景、主导的物理原理以及任何使用它的人的指导方针。这是因为确定这种相互关系的数据通常是可用的,并且只需要一组简单的方程就可以建立起来。我们以近年来收集的数据为例进行说明,这些数据主要集中在水基大分子系统上,并且与药物应用相关。我们最后讨论了未来验证天然/合成大分子材料以分散或溶解方式(即在溶液中)的先进设计和定制特性的动机和机会。这里概述的概念的特别重要性源于这样一种情况,即一旦建立了流体动力学不变量和/或沉降参数,大分子科学中最常用的Kuhn-Mark-Houwink-Sakurada经典标度关系就会得到满足。然而,流体动力学不变量和沉降参数概念的建立不需要一系列摩尔质量,并且有助于验证大分子摩尔质量值的合理估计。