Suppr超能文献

甜高粱根转录组的发育动态阐明了质外体屏障的分化。

The developmental dynamics of the sweet sorghum root transcriptome elucidate the differentiation of apoplastic barriers.

机构信息

Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong, P.R. China.

Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China.

出版信息

Plant Signal Behav. 2020 Mar 3;15(3):1724465. doi: 10.1080/15592324.2020.1724465. Epub 2020 Feb 6.

Abstract

Apoplastic barriers in the endodermis, such as Casparian strips and suberin lamellae, control the passage of water and minerals into the stele. Apoplastic barriers are thus thought to contribute to salt exclusion in salt-excluding plants such as sweet sorghum (). However, little is known about the genes involved in the development of the apoplastic barrier. Here, we identified candidate genes involved in Casparian strip and suberin lamella development in the roots of a sweet sorghum line (M-81E). Three distinct developmental regions (no differentiation, developing, and mature) were identified based on Casparian strip and suberin lamella staining in root cross sections. Sequencing of RNA extracted from these distinct sections identified key genes participating in the differentiation of the apoplastic barrier. The different sections were structurally distinct, presumably due to differences in gene expression. Genes controlling the phenylpropanoid pathway, fatty acid elongation, and fatty acid ω-hydroxylation appeared to be directly responsible for the formation of the apoplastic barrier. Our dataset elucidates the molecular processes underpinning apoplastic barrier development and provides a basis for future research on molecular mechanisms of apoplastic barrier formation and salt exclusion. SHR, SHORTROOT; MYB, MYB DOMAIN PROTEIN; CIFs, Casparian strip integrity factors; CASP, Casparian strip domain proteins; PER, peroxidase; ESB1, ENHANCED SUBERIN1; CS, Casparian strip; RPKM, reads per kilobase per million reads; DEGs, differentially expressed genes; FDR, false discovery rate; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RNA-seq, RNA sequencing; PAL, phenylalanine ammonia-lyase; CYP, cytochrome P450 monooxygenases; 4CL, 4-coumarate-CoA ligase; AAE5, ACYL-ACTIVATING ENZYME5; CCR, cinnamoyl CoA reductase; TKPR, TETRAKETIDE ALPHA-PYRONE REDUCTASE1; CAD, cinnamyl alcohol dehydrogenase; HST, shikimate -hydroxycinnamoyltransferase; PMAT2, PHENOLIC GLUCOSIDE MALONYLTRANSFERASE2; CCOAOMT, caffeoyl-CoA -methyltransferase; KCS, β-ketoacyl-CoA synthase; CUT1, CUTICULAR PROTEIN1; DET2, 5-alpha-reductase; TAX, 3'--debenzoyl-2'-deoxytaxol -benzoyltransferase; CER1, ECERIFERUM1; FAR, fatty acyl reductase; AF-CoA, alcohol-forming fatty acyl-CoA reductase; ABCG, ATP-binding cassette, subfamily G; ERF, ethylene-responsive transcription factor; HSF, heat stress transcription factor; NTF, NUCLEAR TRANSCRIPTION FACTOR Y SUBUNIT B-5; GPAT, glycerol 3-phosphate acyltransferase.

摘要

质外体屏障在内皮层中,如凯氏带和栓质层,控制水和矿物质进入中柱。因此,质外体屏障被认为有助于盐排斥,如在盐排斥植物如甜高粱()中。然而,对于参与质外体屏障发育的基因知之甚少。在这里,我们在甜高粱系(M-81E)的根中鉴定了与凯氏带和栓质层发育相关的候选基因。根据根横切面上凯氏带和栓质层染色,鉴定了三个不同的发育区域(无分化、发育和成熟)。从这些不同的部分提取 RNA 进行测序,鉴定了参与质外体屏障分化的关键基因。不同的部分在结构上是不同的,可能是由于基因表达的差异。控制苯丙烷途径、脂肪酸延伸和脂肪酸ω-羟化的基因似乎直接负责质外体屏障的形成。我们的数据集阐明了质外体屏障发育的分子过程,并为未来研究质外体屏障形成和盐排斥的分子机制提供了基础。SHR,SHORTROOT;MYB,MYB 结构域蛋白;CIFs,凯氏带完整性因子;CASP,凯氏带结构域蛋白;PER,过氧化物酶;ESB1,ENHANCED SUBERIN1;CS,凯氏带;RPKM,每百万读长的每千碱基读长;DEGs,差异表达基因;FDR,错误发现率;GO,基因本体论;KEGG,京都基因与基因组百科全书;RNA-seq,RNA 测序;PAL,苯丙氨酸解氨酶;CYP,细胞色素 P450 单加氧酶;4CL,4-香豆酰辅酶 A 连接酶;AAE5,酰基辅酶 A 激活酶 5;CCR,肉桂酰辅酶 A 还原酶;TKPR,四酮 α-吡喃酮还原酶 1;CAD,肉桂醇脱氢酶;HST,莽草酸 -羟基肉桂酰转移酶;PMAT2,酚糖苷丙二酰转移酶 2;CCOAOMT,咖啡酰辅酶 A -甲基转移酶;KCS,β-酮酰基辅酶 A 合酶;CUT1,角质蛋白 1;DET2,5-α-去苯甲酰-2'-脱氧紫杉醇-苯甲酰转移酶;CER1,ECERIFERUM1;FAR,脂肪酰基还原酶;AF-CoA,醇形成脂肪酰基辅酶 A 还原酶;ABCG,ATP 结合盒,亚家族 G;ERF,乙烯响应转录因子;HSF,热应激转录因子;NTF,核转录因子 Y 亚基 B-5;GPAT,甘油 3-磷酸酰基转移酶。

相似文献

8
The MYB36 transcription factor orchestrates Casparian strip formation.MYB36转录因子调控凯氏带的形成。
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10533-8. doi: 10.1073/pnas.1507691112. Epub 2015 Jun 29.

本文引用的文献

2
Lignin polymerization: how do plants manage the chemistry so well?木质素聚合:植物是如何如此巧妙地控制化学反应的?
Curr Opin Biotechnol. 2019 Apr;56:75-81. doi: 10.1016/j.copbio.2018.10.001. Epub 2018 Oct 22.
6
Functions of ABC transporters in plant growth and development.ABC 转运蛋白在植物生长发育中的功能。
Curr Opin Plant Biol. 2018 Feb;41:32-38. doi: 10.1016/j.pbi.2017.08.003. Epub 2017 Aug 30.
7
The endodermis, a tightly controlled barrier for nutrients.内皮层,一种对养分严格控制的屏障。
Curr Opin Plant Biol. 2017 Oct;39:136-143. doi: 10.1016/j.pbi.2017.06.010. Epub 2017 Aug 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验