Badagliacca Giuseppe, Ruisi Paolo, Rees Robert M, Saia Sergio
1Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
2Scotland's Rural College (SRUC), West Mains Road, Edinburgh, EH9 3JG UK.
Biol Fertil Soils. 2017;53(5):547-561. doi: 10.1007/s00374-017-1195-z. Epub 2017 Apr 13.
Management of plant residues plays an important role in maintaining soil quality and nutrient availability for plants and microbes. However, there is considerable uncertainty regarding the factors controlling residue decomposition and their effects on greenhouse gas (GHG) emissions from the soil. This uncertainty is created both by the complexity of the processes involved and limitations in the methodologies commonly used to quantify GHG emissions. We therefore investigated the addition of two soil residues (durum wheat and faba bean) with similar C/N ratios but contrasting fibres, lignin and cellulose contents on nutrient dynamics and GHG emission from two contrasting soils: a low-soil organic carbon (SOC), high pH clay soil (Chromic Haploxerert) and a high-SOC, low pH sandy-loam soil (Eutric Cambisol). In addition, we compared the effectiveness of the use of an infrared gas analyser (IRGA) and a photoacoustic gas analyser (PGA) to measure GHG emissions with more conventional gas chromatography (GC). There was a strong correlation between the different measurement techniques which strengthens the case for the use of continuous measurement approaches involving IRGA and PGA analyses in studies of this type. The unamended Cambisol released 286% more CO and 30% more NO than the Haploxerert. Addition of plant residues increased CO emissions more in the Haploxerert than Cambisol and NO emission more in the Cambisol than in the Haploxerert. This may have been a consequence of the high N stabilization efficiency of the Haploxerert resulting from its high pH and the effect of the clay on mineralization of native organic matter. These results have implication management of plant residues in different soil types.
植物残体的管理在维持土壤质量以及为植物和微生物提供养分有效性方面发挥着重要作用。然而,关于控制残体分解的因素及其对土壤温室气体(GHG)排放的影响,仍存在相当大的不确定性。这种不确定性是由所涉及过程的复杂性以及通常用于量化温室气体排放的方法的局限性共同造成的。因此,我们研究了添加两种具有相似碳氮比但纤维、木质素和纤维素含量不同的土壤残体(硬粒小麦和蚕豆)对两种截然不同的土壤中养分动态和温室气体排放的影响:一种是低土壤有机碳(SOC)、高pH值的粘土(深色简育干润砂质新成土),另一种是高SOC、低pH值的砂壤土(饱和淡色始成土)。此外,我们比较了使用红外气体分析仪(IRGA)和光声气体分析仪(PGA)测量温室气体排放与更传统的气相色谱法(GC)的有效性。不同测量技术之间存在很强的相关性,这加强了在这类研究中使用涉及IRGA和PGA分析的连续测量方法的理由。未改良的始成土比简育干润砂质新成土释放的CO多286%,NO多30%。添加植物残体后,简育干润砂质新成土中CO排放的增加幅度比始成土更大,而始成土中NO排放的增加幅度比简育干润砂质新成土更大。这可能是由于简育干润砂质新成土因其高pH值导致的高氮稳定效率以及粘土对原生有机质矿化的影响。这些结果对不同土壤类型中植物残体的管理具有启示意义。