Suppr超能文献

接受阿比特龙治疗患者的预后因素。

Prognostic factors for patients treated with abiraterone.

作者信息

Alvim Cecília M, Mansinho André, Paiva Rita S, Brás Raquel, Semedo Patrícia M, Lobo-Martins Soraia, da Ponte Carolina B, Macedo Daniela, Ribeiro Leonor, Dos Reis José P, Fernandes Isabel, Costa Luís

机构信息

Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, 1649-035, Portugal.

Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.

出版信息

Future Sci OA. 2019 Dec 12;6(2):FSO436. doi: 10.2144/fsoa-2019-0079.

Abstract

AIM

To evaluate prostate-specific antigen response (PSAr) defined as a ≥50% decrease in PSA concentration from the pretreatment value, as a prognostic factor in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with abiraterone acetate (AA).

METHODS

Retrospective evaluation of patients with mCRPC treated with AA.

RESULTS

124 patients were identified. Median overall survival and progression-free survival for patients achieving PSAr versus patients without PSAr were 29.3 versus 9.7 months and 17.0 versus 5.2 months, respectively. Multivariate analysis confirmed that PSAr correlated with better overall survival (hazard ratio: 0.19; 95% CI: 0.10-0.38; p < 0.001) and progression-free survival (hazard ratio: 0.24; 95% CI: 0.14-0.41; p < 0.001).

CONCLUSION

PSAr can be utilized as prognostic and predictive factors in mCRPC patients treated with AA.

摘要

目的

评估前列腺特异性抗原反应(PSAr),即前列腺特异性抗原(PSA)浓度较治疗前值降低≥50%,作为醋酸阿比特龙(AA)治疗的转移性去势抵抗性前列腺癌(mCRPC)患者的预后因素。

方法

对接受AA治疗的mCRPC患者进行回顾性评估。

结果

共纳入124例患者。达到PSAr的患者与未达到PSAr的患者的中位总生存期和无进展生存期分别为29.3个月对9.7个月和17.0个月对5.2个月。多因素分析证实,PSAr与更好的总生存期(风险比:0.19;95%置信区间:0.10 - 0.38;p < 0.001)和无进展生存期(风险比:0.24;95%置信区间:0.14 - 0.41;p < 0.001)相关。

结论

PSAr可作为接受AA治疗的mCRPC患者的预后和预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f826/6997918/8c32c224dc9b/fsoa-06-436-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验