Suppr超能文献

使用动态 PET/CTA 融合图像量化心肌血流的原理和设计(DEMYSTIFY),以确定特定冠状动脉病变的生理意义。

Rationale and design of the quantification of myocardial blood flow using dynamic PET/CTA-fused imagery (DEMYSTIFY) to determine physiological significance of specific coronary lesions.

机构信息

Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.

出版信息

J Nucl Cardiol. 2020 Jun;27(3):1030-1039. doi: 10.1007/s12350-020-02052-0. Epub 2020 Feb 5.

Abstract

BACKGROUND

Coronary physiology assessments have been shown by multiple trials to add clinical value in detecting significant coronary artery disease and predicting cardiovascular outcomes. Fractional flow reserve (FFR) obtained during invasive coronary angiography (ICA) has become the new reference standard for hemodynamic significance detection. Absolute myocardial blood flow (MBF) quantification by means of dynamic positron emission tomography (dPET) has high diagnostic and prognostic values. FFR is an invasive measure and as such cannot be applied broadly, while MBF quantification is commonly performed on standard vascular territories intermixing normal flow from normal regions with abnormal flow from abnormal regions and consequently limiting its diagnostic power.

OBJECTIVE

The aim of this study is to provide physicians with reliable software tools for the non-invasive assessment of lesion-specific physiological significance for the entire coronary tree by combining PET-derived absolute flow data and coronary computed tomography angiography (CTA)-derived anatomy and coronary centerlines.

METHODS

The dynamic PET/CTA myocardial blood flow assessment with fused imagery (DEMYSTIFY) study is an observational prospective clinical study to develop algorithms and software tools to fuse coronary anatomy data obtained from CTA with dPET data to non-invasively measure absolute MBF, myocardial flow reserve, and relative flow reserve across specific coronary lesions. Patients (N = 108) will be collected from 4 institutions (Emory University Hospital, USA; Chonnam National University Hospital, South Korea; Samsung Medical Center, South Korea; Seoul National University Hospital, South Korea). These results will be compared to those obtained invasively in the catheterization laboratory and to a relatively novel non-invasive technique to estimate FFR based on CTA and computational fluid dynamics.

CONCLUSIONS

Success of these developments should lead to the following benefits: (1) eliminate unnecessary invasive coronary angiography in patients with no significant lesions, (2) avoid stenting physiologically insignificant lesions, (3) guide percutaneous coronary interventions process to the location of significant lesions, (4) provide a flow-color-coded 3D roadmap of the entire coronary tree to guide bypass surgery, and (5) use less radiation and lower the cost from unnecessary procedures.

TRIAL REGISTRY

The DEMYSTIFY study has been registered on ClinicalTrials.gov with registration number NCT04221594.

摘要

背景

多项试验表明,冠状动脉生理学评估可增加检测显著冠状动脉疾病和预测心血管结局的临床价值。在有创冠状动脉造影(ICA)期间获得的血流储备分数(FFR)已成为检测血流动力学意义的新参考标准。通过动态正电子发射断层扫描(dPET)定量绝对心肌血流(MBF)具有较高的诊断和预后价值。FFR 是一种有创测量方法,因此不能广泛应用,而 MBF 定量通常在标准血管区域进行,这些区域将正常区域的正常血流与异常区域的异常血流混合在一起,从而限制了其诊断能力。

目的

本研究旨在为医生提供可靠的软件工具,通过结合 PET 衍生的绝对流量数据和冠状动脉计算机断层血管造影(CTA)衍生的解剖结构和冠状动脉中心线,对整个冠状动脉树进行病变特异性生理意义的非侵入性评估。

方法

动态 PET/CTA 心肌血流评估与融合图像(DEMYSTIFY)研究是一项观察性前瞻性临床研究,旨在开发算法和软件工具,将来自 CTA 的冠状动脉解剖数据与 dPET 数据融合,以非侵入性方式测量特定冠状动脉病变的绝对 MBF、心肌血流储备和相对血流储备。将从 4 个机构(美国埃默里大学医院、韩国全南国立大学医院、韩国三星医疗中心、韩国首尔国立大学医院)收集 108 例患者。这些结果将与导管实验室获得的结果以及一种相对新颖的基于 CTA 和计算流体动力学估计 FFR 的非侵入性技术进行比较。

结论

这些开发的成功应该会带来以下好处:(1)消除无明显病变患者不必要的有创冠状动脉造影;(2)避免生理性非重要病变的支架植入;(3)指导经皮冠状动脉介入治疗过程到重要病变部位;(4)提供整个冠状动脉树的彩色血流编码 3D 路线图,以指导旁路手术;(5)减少不必要的程序辐射和降低成本。

试验注册

DEMYSTIFY 研究已在 ClinicalTrials.gov 上注册,注册号为 NCT04221594。

相似文献

引用本文的文献

4
KSNM60 in Cardiology: Regrowth After a Long Pause.心脏病学中的KSNM60:长期停顿后的再生。
Nucl Med Mol Imaging. 2021 Aug;55(4):151-161. doi: 10.1007/s13139-021-00702-w. Epub 2021 Jun 8.

本文引用的文献

1
Integrated 3D Anatomical Model for Automatic Myocardial Segmentation in Cardiac CT Imagery.用于心脏CT图像中心肌自动分割的集成3D解剖模型
Comput Methods Biomech Biomed Eng Imaging Vis. 2019;7(5-6):690-706. doi: 10.1080/21681163.2019.1583607. Epub 2019 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验