Suppr超能文献

用于无枝晶锂金属电池的氮掺杂石墨炔涂层

N-Doped Graphdiyne Coating for Dendrite-Free Lithium Metal Batteries.

作者信息

Shang Hong, Gu Yu, Wang Yingbin, Zuo Zicheng

机构信息

School of Science, China University of Geosciences (Beijing), Beijing, 10083, P. R. China.

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

出版信息

Chemistry. 2020 Apr 24;26(24):5434-5440. doi: 10.1002/chem.201905618. Epub 2020 Apr 9.

Abstract

Nonuniform nucleation is one of the major reasons for the dendric growth of metallic lithium, which leads to intractable problems in the efficiency, reversibility, and safety in Li-based batteries. To improve the deposition of metallic Li on Cu substrates, herein, a freestanding current collector (NGDY@CuNW) is formed by coating pyridinic nitrogen-doped graphdiyne (NGDY) nanofilms on 3D Cu nanowires (CuNWs). Theoretical predictions reveal that the introduction of nitrogen atoms in the 2D GDY can enhance the binding energy between the Li atom and GDY, therefore improving the lithiophilicity on the surface for uniform lithium nucleation and deposition. Accordingly, the deposited metallic Li on the NGDY@CuNW electrode exhibits a dendrite-free morphology, resulting in significant improvements in terms of the reversibility with a high coulombic efficiency (CE) and a long lifespan at high current density. Our research provides an efficient method to control the surface property of Cu, which also will be instructive for other metal batteries.

摘要

非均匀成核是金属锂枝晶生长的主要原因之一,这导致锂基电池在效率、可逆性和安全性方面出现棘手的问题。为了改善金属锂在铜基底上的沉积,在此,通过在三维铜纳米线(CuNWs)上涂覆吡啶氮掺杂石墨炔(NGDY)纳米薄膜形成了一种独立的集流体(NGDY@CuNW)。理论预测表明,二维石墨炔中氮原子的引入可以增强锂原子与石墨炔之间的结合能,从而提高表面的亲锂性,实现均匀的锂成核和沉积。因此,在NGDY@CuNW电极上沉积的金属锂呈现出无枝晶形态,在高电流密度下具有高库仑效率(CE)和长寿命,从而在可逆性方面有显著改善。我们的研究提供了一种控制铜表面性质的有效方法,这对其他金属电池也具有指导意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验