Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany. Department of Physics and Astronomy, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany. Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
Phys Med Biol. 2020 Apr 24;65(9):095007. doi: 10.1088/1361-6560/ab735e.
Accurate beam range prediction during clinical treatment planning is key to improve targeted dose delivery in proton and heavy ion therapy. A substantial source of beam range uncertainty is the prediction of ion stopping power ratio (SPR) relative to water from an empirical calibration based on conventional x-ray computed tomography (CT) used in clinical practice today. The aim of this study was to investigate the potential of a novel spectral CT imaging technique based on a dual-layer detector-based approach to improve the SPR prediction for particle therapy treatment planning, an improvement that would minimize the beam range uncertainty and allow for reduced safety margins in the patient. Using calibrated and validated maps of electron density and effective atomic number from spectral CT data, predicted SPR values in tissue substitutes were within a mean accuracy of 0.6% compared to measured SPR and showed substantially better agreement with measured data compared to standard CT-number-to-SPR calibration. The accuracy of SPR was not affected by CT acquisition settings, reconstruction parameters, phantom size, and type. Additionally, various spectral CT conversion algorithms were compared to determine the most accurate prediction method. Dosimetric validation of the developed method using a half-head anthropomorphic phantom in a routine-like setting indicated that SPR prediction with dual-layer spectral CT outperforms the clinical single-energy CT standard with a range prediction improvement of 1 mm. This study demonstrated in homogeneous and heterogeneous phantoms that spectral CT is feasible for particle therapy planning to improve range estimates for high-precision particle therapy.
在临床治疗计划中准确预测射束射程是提高质子和重离子治疗靶向剂量输送的关键。射束射程不确定性的一个主要来源是基于当今临床实践中使用的常规 X 射线计算机断层扫描(CT)的经验校准来预测离子阻止本领比(SPR)相对于水的值。本研究的目的是研究一种基于双层探测器方法的新型光谱 CT 成像技术在改善粒子治疗计划中 SPR 预测方面的潜力,这种改进将最大限度地减少射束射程不确定性,并允许患者的安全裕度降低。使用来自光谱 CT 数据的电子密度和有效原子数校准和验证图,组织替代物中的预测 SPR 值与测量的 SPR 值相比平均精度在 0.6%以内,与标准 CT 数到 SPR 校准相比,与测量数据的一致性要好得多。SPR 的准确性不受 CT 采集设置、重建参数、体模大小和类型的影响。此外,还比较了各种光谱 CT 转换算法,以确定最准确的预测方法。在常规类似设置下,使用半头人体模型体模对所开发方法进行剂量验证表明,与临床单能 CT 标准相比,双层光谱 CT 的 SPR 预测具有更好的性能,射程预测精度提高了 1 毫米。这项研究在均匀和非均匀体模中证明了光谱 CT 可用于粒子治疗计划,以提高高精度粒子治疗的射程估计。