Ding Jingxuan, Niedziela Jennifer L, Bansal Dipanshu, Wang Jiuling, He Xing, May Andrew F, Ehlers Georg, Abernathy Douglas L, Said Ayman, Alatas Ahmet, Ren Yang, Arya Gaurav, Delaire Olivier
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708.
Nuclear Nonproliferation Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):3930-3937. doi: 10.1073/pnas.1913916117. Epub 2020 Feb 6.
Intrinsically low lattice thermal conductivity ([Formula: see text]) in superionic conductors is of great interest for energy conversion applications in thermoelectrics. Yet, the complex atomic dynamics leading to superionicity and ultralow thermal conductivity remain poorly understood. Here, we report a comprehensive study of the lattice dynamics and superionic diffusion in [Formula: see text] from energy- and momentum-resolved neutron and X-ray scattering techniques, combined with first-principles calculations. Our results settle unresolved questions about the lattice dynamics and thermal conduction mechanism in [Formula: see text] We find that the heat-carrying long-wavelength transverse acoustic (TA) phonons coexist with the ultrafast diffusion of Ag ions in the superionic phase, while the short-wavelength nondispersive TA phonons break down. Strong scattering of phonon quasiparticles by anharmonicity and Ag disorder are the origin of intrinsically low [Formula: see text] The breakdown of short-wavelength TA phonons is directly related to the Ag diffusion, with the vibrational spectral weight associated to Ag oscillations evolving into stochastic decaying fluctuations. Furthermore, the origin of fast ionic diffusion is shown to arise from extended flat basins in the energy landscape and collective hopping behavior facilitated by strong repulsion between Ag ions. These results provide fundamental insights into the complex atomic dynamics of superionic conductors.
超离子导体中固有的低晶格热导率([公式:见正文])对于热电能量转换应用具有极大的吸引力。然而,导致超离子性和超低热导率的复杂原子动力学仍知之甚少。在此,我们结合能量分辨和动量分辨的中子与X射线散射技术以及第一性原理计算,对[公式:见正文]中的晶格动力学和超离子扩散进行了全面研究。我们的结果解决了关于[公式:见正文]中晶格动力学和热传导机制的未解决问题。我们发现,在超离子相中,携带热量的长波长横向声学(TA)声子与Ag离子的超快扩散共存,而短波长非色散TA声子则分解。声子准粒子因非谐性和Ag无序而产生的强散射是固有的低[公式:见正文]的起源。短波长TA声子的分解与Ag扩散直接相关,与Ag振荡相关的振动谱权重演变为随机衰减波动。此外,快速离子扩散的起源被证明源于能量景观中的扩展平坦盆地以及Ag离子之间的强排斥促进的集体跳跃行为。这些结果为超离子导体的复杂原子动力学提供了基本见解。