Suppr超能文献

汞会改变巴西湿地的根际细菌群落,而这种改变可以被植物-细菌共生体进行生物修复。

Mercury alters the rhizobacterial community in Brazilian wetlands and it can be bioremediated by the plant-bacteria association.

机构信息

Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil.

Embrapa Western Amazonia, Manaus, Amazonas, Brazil.

出版信息

Environ Sci Pollut Res Int. 2020 Apr;27(12):13550-13564. doi: 10.1007/s11356-020-07913-2. Epub 2020 Feb 6.

Abstract

This study examined how soil mercury contamination affected the structure and functionality of rhizobacteria communities from Aeschynomene fluminensis and Polygonum acuminatum and how rhizobacteria mediate metal bioremediation. The strains were isolated using culture-dependent methods, identified through 16S rDNA gene sequencing, and characterized with respect to their functional traits related to plant growth promotion and resistance to metals and antibiotics. The bioremediation capacity of the rhizobacteria was determined in greenhouse using corn plants. The isolated bacteria belonged to the phyla Actinobacteria, Deinococcus-Thermus, Firmicutes, and Proteobacteria, with great abundance of the species Microbacterium trichothecenolyticum. The rhizobacteria abundance, richness, and diversity were greater in mercury-contaminated soils. Bacteria isolated from contaminated environments had higher minimum inhibitory concentration values, presented plasmids and the merA gene, and were multi-resistant to metals and antibiotics. Enterobacter sp._C35 and M. trichothecenolyticum_C34 significantly improved (Dunnett's test, p < 0.05) corn plant growth in mercury-contaminated soil. These bacteria helped to reduce up to 87% of the mercury content in the soil, and increased the mercury bioaccumulation factor by up to 94%. Mercury bioremediation mitigated toxicity of the contaminated substrate. Enterobacter sp._C35, Bacillus megaterium_C28, and Bacillus mycoides_C1 stimulated corn plant growth and could be added to biofertilizers produced in research and related industries.

摘要

本研究探讨了土壤汞污染如何影响 Aeschynomene fluminensis 和 Polygonum acuminatum 根际细菌群落的结构和功能,以及根际细菌如何介导金属生物修复。采用基于培养的方法分离菌株,通过 16S rDNA 基因测序进行鉴定,并根据其与植物生长促进和耐金属及抗生素相关的功能特性进行特征描述。采用温室玉米植株法测定根际细菌的生物修复能力。分离出的细菌属于放线菌门、厚壁菌门、Firmicutes 和 Proteobacteria 门,其中 Trichothecene 分解菌属(Microbacterium)的丰度最高。受汞污染土壤中的根际细菌丰度、丰富度和多样性更大。从污染环境中分离出的细菌具有更高的最小抑菌浓度值,携带质粒和 merA 基因,对金属和抗生素具有多重耐药性。肠杆菌属(Enterobacter)_C35 和 Trichothecene 分解菌属(Microbacterium)_C34 显著提高(Dunnett 检验,p<0.05)受汞污染土壤中玉米植株的生长。这些细菌有助于将土壤中的汞含量降低多达 87%,并将汞的生物积累系数提高多达 94%。汞的生物修复减轻了受污染基质的毒性。肠杆菌属(Enterobacter)_C35、巨大芽孢杆菌(Bacillus megaterium)_C28 和粘质沙雷氏菌(Bacillus mycoides)_C1 刺激玉米植株生长,可添加到研究和相关产业生产的生物肥料中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验