Han Qing, Dong Yinjuan, Xu Chunjiang, Hu Qiyu, Dong Congzhao, Liang Xiangming, Ding Yong
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
ACS Appl Mater Interfaces. 2020 Mar 4;12(9):10410-10419. doi: 10.1021/acsami.9b21507. Epub 2020 Feb 19.
The development of new dual functional photocatalysts is highly desirable for conversion and storage of solar energy. Herein, we first constructed hierarchical structure MIL-100(Fe)@BiVO in situ growing MIL-100(Fe) nanoparticles (NPs) on the surface of decahedron BiVO under mild hydrothermal conditions. The as-synthesized hybrid nanostructure is unambiguously determined using a series of characterization methods. These results demonstrate that the ultra-tiny MOF MIL-100(Fe) particles are immobilized on the surface of decahedron BiVO and the composite exhibits a strong interaction between BiVO and MIL-100(Fe). This hybrid material MIL-100(Fe)@BiVO is employed as a photocatalyst for water oxidation reaction and demonstrates higher O production activity in comparison with bare BiVO. The best performance obtained at the optimal mass percentage of MIL-100(Fe) (8.0 wt %) reaches 333.3 μmol h g of the O evolution rate irradiated with visible light, which is almost 4.3 times higher than bare BiVO (77.3 μmol h g). The enhanced water oxidation performance is due to the more efficient interfacial electron-hole transfer between MIL-100(Fe) and BiVO, which is verified by the results of various photo-electrochemical characterizations. Moreover, the as-prepared composite MIL-100(Fe)@BiVO also displays excellent stability for visible-light-driven water oxidation. This study affords a rational strategy for the controllable construction by loading metal-organic frameworks on a semiconductor surface, which is a good reference for other artificial photosystems.
开发新型双功能光催化剂对于太阳能的转化和存储非常必要。在此,我们首次构建了分级结构的MIL-100(Fe)@BiVO,即在温和水热条件下,在十面体BiVO表面原位生长MIL-100(Fe)纳米颗粒(NPs)。使用一系列表征方法明确确定了所合成的混合纳米结构。这些结果表明,超小的MOF MIL-100(Fe)颗粒固定在十面体BiVO表面,并且该复合材料在BiVO和MIL-100(Fe)之间表现出强烈的相互作用。这种混合材料MIL-100(Fe)@BiVO被用作水氧化反应的光催化剂,与裸BiVO相比,表现出更高的产氧活性。在MIL-100(Fe)的最佳质量百分比(8.0 wt%)下获得的最佳性能,在可见光照射下的析氧速率达到333.3 μmol h g,几乎是裸BiVO(77.3 μmol h g)的4.3倍。水氧化性能的增强归因于MIL-100(Fe)和BiVO之间更有效的界面电子-空穴转移,这通过各种光电化学表征结果得到证实。此外,所制备的复合材料MIL-100(Fe)@BiVO在可见光驱动的水氧化中也表现出优异的稳定性。这项研究为通过在半导体表面负载金属有机框架进行可控构建提供了一种合理策略,这对其他人工光系统具有很好的参考价值。