Suppr超能文献

一种用于筛选拉曼光谱和红外(中红外和近红外)光谱对低活性药物成分含量固体剂型进行定量分析能力的比较方法:以阿普唑仑为例。

A Comparative Approach to Screen the Capability of Raman and Infrared (Mid- and Near-) Spectroscopy for Quantification of Low-Active Pharmaceutical Ingredient Content Solid Dosage Forms: The Case of Alprazolam.

作者信息

Makraduli Liljana, Makreski Petre, Goracinova Katerina, Stefov Stefan, Anevska Maja, Geskovski Nikola

机构信息

Faculty of Pharmacy, Institute of Pharmaceutical Technology, Ss Cyril and Methodius University, Skopje, North Macedonia.

ReplekFarm, Skopje, North Macedonia.

出版信息

Appl Spectrosc. 2020 Jun;74(6):661-673. doi: 10.1177/0003702820905367. Epub 2020 Apr 9.

Abstract

Content uniformity is a critical attribute for potent and low-dosage formulations of active pharmaceutical ingredient (API) that, in addition to the formulation parameters, plays pivotal role during pharmaceutical development and production. However, when API content is low, implementing a vibrational spectroscopic analytical tool to monitor the content and blend uniformity remains a challenging task. The aim of this study was to showcase the potentials of mid-infrared (MIR), near-infrared (NIR), and Raman spectroscopy for quantitative analysis of alprazolam (ALZ) in a low-content powder blends with lactose, which is used as a common diluent for tablets produced by direct compression. The offered approach might be further scaled up and exploited for potential application in the process analytical technology (PAT). Partial least square and orthogonal PLS (OPLS) methodologies were employed to build the calibration models from raw and processed spectral data (standard normal variate, first and second derivatives). The models were further compared regarding their main statistical indicators: correlation coefficients, predictivity, root mean square error of estimation (RMSEE), and root mean square error of cross-validation (RMSEEcv). All statistical models presented high regression and predictivity coefficients. The RMSEEcv for the optimal models was 1.118, 0.08, and 0.059% for MIR, NIR, and Raman spectroscopy, respectively. The scarce information content extracted from the ALZ NIR spectra and the major band overlapping with those from lactose monohydrate was the main culprit of poor accuracy in the NIR model, whereas the subsampling instrumental setup (resulting in a non-representative spectral acquisition of the sample) was regarded as a main limitation for the MIR-based calibration model. The OPLS models of the Raman spectra of the powder blends manifested favorable statistical indicators for the accuracy of the calibration model, probably due to the distinctive ALZ Raman pattern resulting in the largest number of predictive spectral points that were used for the mathematical modeling. Furthermore, the Raman scattering calibration model was optimized in narrower scanning range (1700-700 cm) and its prediction power was evaluated (root mean square error of prediction, RMSEP = 0.03%). Thus, the Raman spectroscopy presented the most favorable statistical indicators in this comparative study and therefore should be further considered as a PAT for the quantitative determination of ALZ in low-content powder blends.

摘要

含量均匀度是活性药物成分(API)强效和低剂量制剂的关键属性,除制剂参数外,在药物研发和生产过程中也起着关键作用。然而,当API含量较低时,采用振动光谱分析工具监测含量和混合均匀度仍是一项具有挑战性的任务。本研究的目的是展示中红外(MIR)、近红外(NIR)和拉曼光谱在定量分析与乳糖混合的低含量粉末中阿普唑仑(ALZ)的潜力,乳糖用作直接压片生产片剂的常用稀释剂。所提供的方法可能会进一步扩大规模,并用于过程分析技术(PAT)的潜在应用。采用偏最小二乘法和正交偏最小二乘法(OPLS)从原始光谱数据和处理后的光谱数据(标准正态变量、一阶和二阶导数)建立校准模型。进一步比较了模型的主要统计指标:相关系数、预测性、估计均方根误差(RMSEE)和交叉验证均方根误差(RMSEEcv)。所有统计模型均呈现出较高的回归系数和预测系数。MIR、NIR和拉曼光谱最佳模型的RMSEEcv分别为1.118%、0.08%和0.059%。从ALZ近红外光谱中提取的信息含量稀少以及与一水乳糖的主要谱带重叠是近红外模型准确性差的主要原因,而子采样仪器设置(导致样品的光谱采集不具代表性)被视为基于中红外的校准模型的主要限制。粉末混合物拉曼光谱的OPLS模型在校准模型准确性方面表现出良好的统计指标,这可能是由于独特的ALZ拉曼模式导致用于数学建模的预测光谱点数最多。此外,拉曼散射校准模型在较窄的扫描范围(1700 - 700 cm)内进行了优化,并评估了其预测能力(预测均方根误差,RMSEP = 0.03%)。因此,在本比较研究中,拉曼光谱呈现出最有利的统计指标,因此应进一步考虑将其作为定量测定低含量粉末混合物中ALZ的PAT方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验