Suppr超能文献

采用气相色谱-轨道阱质谱联用技术对痕量持久性有机污染物进行分析,通过对时域数据进行互补采集和处理来提高性能。

Trace-Level Persistent Organic Pollutant Analysis with Gas-Chromatography Orbitrap Mass Spectrometry-Enhanced Performance by Complementary Acquisition and Processing of Time-Domain Data.

机构信息

Spectroswiss , EPFL Innovation Park, Building I, 1015 Lausanne , Switzerland.

Swiss Federal Laboratories for Materials Science and Technology (Empa) , Überlandstrasse 129 , 8600 Dübendorf , Switzerland.

出版信息

J Am Soc Mass Spectrom. 2020 Feb 5;31(2):257-266. doi: 10.1021/jasms.9b00032. Epub 2020 Jan 14.

Abstract

The range of commercial techniques for high-resolution gas-chromatography-mass spectrometry (GC-MS) has been recently extended with the introduction of GC Orbitrap Fourier transform mass spectrometry (FTMS). We report on progress with quantitation performance in the analysis of persistent organic pollutants (POP), by averaging of time-domain signals (), from a number of GC-FTMS experiment replicates. Compared to a standard GC-FTMS measurement (a single GC-FTMS experiment replicate, mass spectra representation in reduced profile mode), for the 10 GC-FTMS technical replicates of ultratrace POP analysis, sensitivity improvement of up to 1 order of magnitude is demonstrated. The accumulation method was implemented with an external high-performance data acquisition system and dedicated data processing software to acquire the time-domain data for each GC-FTMS replicate and to average the acquired GC-FTMS data sets. Concomitantly, the increased flexibility in ion signal detection allowed the attainment of ultrahigh-mass resolution (UHR), approaching = 700 000 at = 200.

摘要

商业上用于高分辨率气相色谱-质谱(GC-MS)的技术范围最近随着 GC Orbitrap 傅里叶变换质谱(FTMS)的引入而得到扩展。我们报告了通过对多个 GC-FTMS 实验重复的时域信号()进行平均,在持久性有机污染物(POP)分析中的定量性能的进展。与标准的 GC-FTMS 测量(单个 GC-FTMS 实验重复,以简化模式表示质谱)相比,对于超痕量 POP 分析的 10 个 GC-FTMS 技术重复,灵敏度提高了多达 1 个数量级。累积方法是通过外部高性能数据采集系统和专用数据处理软件来实现的,用于采集每个 GC-FTMS 重复的时域数据,并对采集的 GC-FTMS 数据集进行平均。同时,离子信号检测的灵活性增加允许达到超高质量分辨率(UHR),接近 = 700 000 时 = 200。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验