Dong Zhaowen, Albers Lena, Müller Thomas
Institute of Chemistry , Carl von Ossietzky University Oldenburg , Carl von Ossietzky-Str. 9-11 , D-26129 Oldenburg , Germany, European Union.
Acc Chem Res. 2020 Feb 18;53(2):532-543. doi: 10.1021/acs.accounts.9b00636. Epub 2020 Feb 7.
Group 14 element heteroles are the heavier analogues of cyclopentadienes in which a heavier group 14 element atom replaces the sp carbon atom. In particular siloles and, to a somewhat smaller degree, germoles attracted considerable attention since the early 1990s due to their favorable photophysical properties which allowed the construction of OLEDs using group 14 element heteroles as emissive or electron-transport layers. Anions and in particular dianions derived from group 14 element heteroles have been of substantial interest due to the possible occurrence of Hückel aromaticity involving the heavier main group atom. Aromaticity is not the only notable electronic feature of silole and germole dianions; the spatial and energetic alignment of their frontier orbitals is equally remarkable. With a high lying lone pair at the heteroatom, which is orthogonal to a delocalized π-system, their frontier orbital sequence closely resembles that of N-heterocyclic carbene analogues. Despite these intriguing parallels between carbene analogues and silole and germole dianions, disappointingly little is known about their reactivity. The installation of trialkylsilyl substituents in the 2,5-positions of the heterocyclopentadiene ring as in K[] has a remarkable effect on the stability of silole and germole dianions and allows us to study their reactivity and to evaluate their synthetic potential in detail. Simple double salt metathesis reactions with different dihalides provided heterofulvenes. These were detected either as intermediates or, in the case of carbon dihalides, isolated in the form of their ylidic isomers . In other cases, the heterofulvenes were the starting point for complex reaction sequences leading to novel binuclear complexes of titanium and zirconium or for simple isomerization reactions that lead to bicyclohexene-type tetrylenes (BCH-tetrylenes) , a novel class of heavier carbenes. These bicyclic carbene analogues are significantly stabilized by homoconjugation between the electron deficient tetrel atom and the remote C═C double bond. Compound with E'R═SiR and E = Si is a valence isomer of disilabenzene and is a stable derivative of the global minimum of the SiCH potential energy surface. With group 13 dihalides, as for example with boron dichlorides, topological closely related compounds were isolated. These Ge(II) complexes of borole dianions are isolobal to half-sandwich complexes of main group elements such as aluminum(I) cyclopentadienide or can be viewed as nido-type clusters. These analogies already open a broad field for future investigations of their reactivity. Trialkylsilyl-substituted heterole dianions provide a facile synthetic approach to several novel intriguing compound classes with the tetrel element in unusual coordination states. The reactivity and the synthetic potential of these new compounds is however widely unexplored and calls for future systematic studies. Gratifyingly, the periodic table of the elements stills holds a lot of potential for future research on the reactivity of silole and germole dianions.
第14族元素杂环戊二烯是环戊二烯的较重类似物,其中一个较重的第14族元素原子取代了sp碳原子。特别是硅杂环戊二烯,以及在某种程度上程度稍小的锗杂环戊二烯,自20世纪90年代初以来就因其良好的光物理性质而备受关注,这些性质使得使用第14族元素杂环戊二烯作为发光层或电子传输层来构建有机发光二极管成为可能。第14族元素杂环戊二烯衍生的阴离子,特别是二价阴离子,由于可能存在涉及较重主族原子的休克尔芳香性而备受关注。芳香性并不是硅杂环戊二烯和锗杂环戊二烯二价阴离子唯一显著的电子特征;它们前线轨道的空间和能量排列同样引人注目。由于杂原子上有一个高位孤对电子,且与离域π体系正交,它们的前线轨道序列与N-杂环卡宾类似物非常相似。尽管卡宾类似物与硅杂环戊二烯和锗杂环戊二烯二价阴离子之间存在这些有趣的相似之处,但令人失望的是,关于它们的反应性知之甚少。在杂环戊二烯环的2,5-位引入三烷基硅基取代基,如在K[]中,对硅杂环戊二烯和锗杂环戊二烯二价阴离子的稳定性有显著影响,并使我们能够详细研究它们的反应性并评估它们的合成潜力。与不同二卤化物的简单复分解双盐反应生成了杂富烯。这些杂富烯要么作为中间体被检测到,要么在碳二卤化物的情况下,以叶立德异构体的形式被分离出来。在其他情况下,杂富烯是复杂反应序列的起点,这些反应序列导致了钛和锆的新型双核配合物 ,或者导致了简单的异构化反应,生成了双环己烯型四价体(BCH-四价体) ,这是一类新型的较重卡宾。这些双环卡宾类似物通过缺电子的四价元素原子与远程C═C双键之间的同共轭作用而得到显著稳定。化合物 中E'R═SiR且E = Si是二硅苯的价异构体,是SiCH势能面全局最小值的稳定衍生物。与第13族二卤化物,例如与二氯化硼反应,分离出了拓扑结构密切相关的化合物 。这些硼杂环戊二烯二价阴离子的锗(II)配合物与主族元素的半夹心配合物,如铝(I)环戊二烯基配合物是等瓣的,或者可以看作是巢型簇。这些相似性已经为未来对它们反应性的研究开辟了广阔的领域。三烷基硅基取代的杂环戊二烯二价阴离子 为合成几种具有处于不寻常配位状态的四价元素的新型有趣化合物类别提供了一种简便的方法。然而,这些新化合物的反应性和合成潜力尚未得到广泛探索,需要未来进行系统研究。令人欣慰的是,元素周期表在未来关于硅杂环戊二烯和锗杂环戊二烯二价阴离子反应性的研究中仍有很大潜力。