文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

代谢综合征和 HF-pEF 猪模型的肠道微生物组。

Gut microbiome of a porcine model of metabolic syndrome and HF-pEF.

机构信息

Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.

School of Microbiology, University College Cork, Cork, Ireland.

出版信息

Am J Physiol Heart Circ Physiol. 2020 Mar 1;318(3):H590-H603. doi: 10.1152/ajpheart.00512.2019. Epub 2020 Feb 7.


DOI:10.1152/ajpheart.00512.2019
PMID:32031871
Abstract

Metabolic syndrome (MetS) is a composite of cardiometabolic risk factors, including obesity, dyslipidemia, hypertension, and insulin resistance, with a range of secondary sequelae such as nonalcoholic fatty liver disease and diastolic heart failure. This syndrome has been identified as one of the greatest global health challenges of the 21st century. Herein, we examine whether a porcine model of diet- and mineralocorticoid-induced MetS closely mimics the cardiovascular, metabolic, gut microbiota, and functional metataxonomic phenotype observed in human studies. Landrace pigs with deoxycorticosterone acetate-induced hypertension fed a diet high in fat, salt, and sugar over 12 wk were assessed for hyperlipidemia, hyperinsulinemia, and immunohistologic, echocardiographic, and hemodynamic parameters, as well as assessed for microbiome phenotype and function through 16S rRNA metataxonomic and metabolomic analysis, respectively. All MetS animals developed obesity, hyperlipidemia, insulin resistance, hypertension, fatty liver, structural cardiovascular changes including left ventricular hypertrophy and left atrial enlargement, and increased circulating saturated fatty acid levels, all in keeping with the human phenotype. A reduction in α-diversity and specific microbiota changes at phylum, family, and genus levels were also observed in this model. Specifically, this porcine model of MetS displayed increased abundances of proinflammatory bacteria coupled with increased circulating tumor necrosis factor-α and increased secondary bile acid-producing bacteria, which substantially impacted fibroblast growth factor-19 expression. Finally, a significant decrease in enteroprotective bacteria and a reduction in short-chain fatty acid-producing bacteria were also noted. Together, these data suggest that diet and mineralocorticoid-mediated development of biochemical and cardiovascular stigmata of metabolic syndrome in pigs leads to temporal gut microbiome changes that mimic key gut microbial population signatures in human cardiometabolic disease. This study extends a prior porcine model of cardiometabolic syndrome to include systemic inflammation, fatty liver, and insulin sensitivity. Gut microbiome changes during evolution of porcine cardiometabolic disease recapitulate those in human subjects with alterations in gut taxa associated with proinflammatory bacteria, bile acid, and fatty acid pathways. This clinical scale model may facilitate design of future interventional trials to test causal relationships between gut dysbiosis and cardiometabolic syndrome at a systemic and organ level.

摘要

代谢综合征(MetS)是一组心血管代谢危险因素的综合病症,包括肥胖、血脂异常、高血压和胰岛素抵抗,以及一系列继发性并发症,如非酒精性脂肪肝和舒张性心力衰竭。该综合征已被确定为 21 世纪全球最大的健康挑战之一。在此,我们研究了饮食和盐皮质激素诱导的代谢综合征的猪模型是否能很好地模拟人类研究中观察到的心血管、代谢、肠道微生物组和功能宏分类组表型。用去氧皮质酮乙酸盐诱导高血压的长白猪在 12 周内喂食高脂肪、高盐和高糖饮食,评估其高血脂、高胰岛素血症以及免疫组织化学、超声心动图和血液动力学参数,并通过 16S rRNA 宏分类组和代谢组学分析分别评估微生物组表型和功能。所有代谢综合征动物都发展为肥胖、血脂异常、胰岛素抵抗、高血压、脂肪肝、包括左心室肥厚和左心房扩大在内的结构性心血管变化,以及循环饱和脂肪酸水平升高,这些都与人类表型一致。该模型还观察到α多样性降低和特定微生物群落在门、科和属水平的变化。具体来说,该代谢综合征猪模型显示促炎细菌丰度增加,同时循环肿瘤坏死因子-α增加和次级胆汁酸产生细菌增加,这极大地影响了成纤维细胞生长因子 19 的表达。最后,还观察到肠保护性细菌显著减少和短链脂肪酸产生细菌减少。总之,这些数据表明,饮食和盐皮质激素介导的猪代谢综合征生物化学和心血管标志的发展导致肠道微生物组随时间发生变化,模拟了人类心血管代谢疾病中关键的肠道微生物种群特征。本研究将先前的猪代谢综合征心血管模型扩展到包括全身炎症、脂肪肝和胰岛素敏感性。在猪心血管代谢疾病演变过程中肠道微生物组的变化反映了人类受试者的变化,与促炎细菌、胆汁酸和脂肪酸途径相关的肠道分类群发生了改变。这种临床规模的模型可能有助于设计未来的干预试验,以在系统和器官水平上测试肠道菌群失调与代谢综合征之间的因果关系。

相似文献

[1]
Gut microbiome of a porcine model of metabolic syndrome and HF-pEF.

Am J Physiol Heart Circ Physiol. 2020-2-7

[2]
Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation.

Free Radic Biol Med. 2017-1

[3]
The gut microbiome and metabolic syndrome.

J Clin Invest. 2019-10-1

[4]
Enzymatically synthesized α-galactooligosaccharides attenuate metabolic syndrome in high-fat diet induced mice in association with the modulation of gut microbiota.

Food Funct. 2021-6-8

[5]
Red pitaya betacyanins protects from diet-induced obesity, liver steatosis and insulin resistance in association with modulation of gut microbiota in mice.

J Gastroenterol Hepatol. 2016-8

[6]
The probiotic Lactobacillus fermentum 296 attenuates cardiometabolic disorders in high fat diet-treated rats.

Nutr Metab Cardiovasc Dis. 2019-8-14

[7]
Gut microbiota-mediated generation of saturated fatty acids elicits inflammation in the liver in murine high-fat diet-induced steatohepatitis.

BMC Gastroenterol. 2017-11-29

[8]
Integrated omics analysis unraveled the microbiome-mediated effects of Yijin-Tang on hepatosteatosis and insulin resistance in obese mouse.

Phytomedicine. 2020-9-21

[9]
Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an model of early obesity and non-alcoholic fatty liver disease.

Dis Model Mech. 2019-4-30

[10]
High fat diet is associated with gut microbiota dysbiosis and decreased gut microbial derived metabolites related to metabolic health in young Göttingen Minipigs.

PLoS One. 2024

引用本文的文献

[1]
The gut microbiota-inflammation-HFpEF axis: deciphering the role of gut microbiota dysregulation in the pathogenesis and management of HFpEF.

Front Cell Infect Microbiol. 2025-3-13

[2]
Synbiotics and Gut-Heart Axis in Cardiometabolic Disease.

JACC Basic Transl Sci. 2025-1-27

[3]
Targeting the Gut-Heart Axis Improves Cardiac Remodeling in a Clinical Scale Model of Cardiometabolic Syndrome.

JACC Basic Transl Sci. 2024-11-20

[4]
A High-Salt Diet Exacerbates Liver Fibrosis through -Dependent Macrophage Activation.

Microbiol Spectr. 2023-2-14

[5]
Chronic high-rate pacing induces heart failure with preserved ejection fraction-like phenotype in Ossabaw swine.

Basic Res Cardiol. 2022-10-12

[6]
Mapping the global research landscape on nutrition and the gut microbiota: Visualization and bibliometric analysis.

World J Gastroenterol. 2022-7-7

[7]
Understanding How Heart Metabolic Derangement Shows Differential Stage Specificity for Heart Failure with Preserved and Reduced Ejection Fraction.

Biomolecules. 2022-7-11

[8]
Gut Microbial Signatures of Distinct Trimethylamine N-Oxide Response to Raspberry Consumption.

Nutrients. 2022-4-15

[9]
Mechanisms, therapeutic implications, and methodological challenges of gut microbiota and cardiovascular diseases: a position paper by the ESC Working Group on Coronary Pathophysiology and Microcirculation.

Cardiovasc Res. 2022-12-29

[10]
Gut Microbiota in Heart Failure Patients With Preserved Ejection Fraction (GUMPTION Study).

Front Cardiovasc Med. 2022-1-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索