Suppr超能文献

预测1267个植物转录组中的抗菌及其他富含半胱氨酸的肽段。

Predicting Antimicrobial and Other Cysteine-Rich Peptides in 1267 Plant Transcriptomes.

作者信息

Shelenkov Andrey, Slavokhotova Anna, Odintsova Tatyana

机构信息

Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow 119991, Russia.

Central Research Institute of Epidemiology, Rospotrebnadzor, Novogireevskaya str. 3a, Moscow 111123, Russia.

出版信息

Antibiotics (Basel). 2020 Feb 4;9(2):60. doi: 10.3390/antibiotics9020060.

Abstract

Antimicrobial peptides (AMPs) are a key component of innate immunity in various organisms including bacteria, insects, mammals, and plants. Their mode of action decreases the probability of developing resistance in pathogenic organisms, which makes them a promising object of study. However, molecular biology methods for searching for AMPs are laborious and expensive, especially for plants. Earlier, we developed a computational pipeline for identifying potential AMPs based on the cysteine motifs they usually possess. Since most motifs are too species-specific, a wide-scale screening of novel data is required to maintain the accuracy of searching algorithms. We have performed a search for potential AMPs in 1267 plant transcriptomes using our pipeline. On average, 50-150 peptides were revealed in each transcriptome. The data was verified by a BLASTp search in nr database to confirm peptide functions and by using random nucleotide sequences to estimate the fraction of erroneous predictions. The datasets obtained will be useful both for molecular biologists investigating AMPs in various organisms and for bioinformaticians developing novel algorithms of motif searching in transcriptomic and genomic sequences. The results obtained will represent a good reference point for future investigations in the fields mentioned above.

摘要

抗菌肽(AMPs)是包括细菌、昆虫、哺乳动物和植物在内的各种生物体先天免疫的关键组成部分。它们的作用方式降低了致病生物体产生耐药性的可能性,这使其成为一个有前景的研究对象。然而,寻找抗菌肽的分子生物学方法既费力又昂贵,尤其是对于植物而言。此前,我们开发了一种计算流程,用于根据抗菌肽通常具有的半胱氨酸基序来识别潜在的抗菌肽。由于大多数基序具有很强的物种特异性,因此需要对新数据进行大规模筛选,以保持搜索算法的准确性。我们使用该流程在1267个植物转录组中搜索了潜在的抗菌肽。每个转录组平均发现50 - 150种肽。通过在nr数据库中进行BLASTp搜索来验证数据以确认肽的功能,并使用随机核苷酸序列来估计错误预测的比例。所获得的数据集对于在各种生物体中研究抗菌肽的分子生物学家以及开发转录组和基因组序列中基序搜索新算法的生物信息学家都将是有用的。所获得的结果将为上述领域的未来研究提供一个很好的参考点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验