Department of Physiology & Biophysics, University of California, Irvine, CA 92697.
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4088-4098. doi: 10.1073/pnas.1915542117. Epub 2020 Feb 7.
The COP9 signalosome (CSN) is an evolutionarily conserved eight-subunit (CSN1-8) protein complex that controls protein ubiquitination by deneddylating Cullin-RING E3 ligases (CRLs). The activation and function of CSN hinges on its structural dynamics, which has been challenging to decipher by conventional tools. Here, we have developed a multichemistry cross-linking mass spectrometry approach enabled by three mass spectometry-cleavable cross-linkers to generate highly reliable cross-link data. We applied this approach with integrative structure modeling to determine the interaction and structural dynamics of CSN with the recently discovered ninth subunit, CSN9, in solution. Our results determined the localization of CSN9 binding sites and revealed CSN9-dependent structural changes of CSN. Together with biochemical analysis, we propose a structural model in which CSN9 binding triggers CSN to adopt a configuration that facilitates CSN-CRL interactions, thereby augmenting CSN deneddylase activity. Our integrative structure analysis workflow can be generalized to define in-solution architectures of dynamic protein complexes that remain inaccessible to other approaches.
COP9 信号小体(CSN)是一个进化上保守的由八个亚基(CSN1-8)组成的蛋白复合物,通过去泛素化 Cullin-RING E3 连接酶(CRLs)来控制蛋白质泛素化。CSN 的激活和功能取决于其结构动态性,这一直是传统工具难以破解的难题。在这里,我们开发了一种多化学交联质谱分析方法,该方法使用三种质谱可裂解交联剂来生成高度可靠的交联数据。我们将这种方法与综合结构建模相结合,以确定 CSN 与最近发现的第九个亚基 CSN9 在溶液中的相互作用和结构动态性。我们的结果确定了 CSN9 结合位点的定位,并揭示了 CSN9 依赖性的 CSN 结构变化。结合生化分析,我们提出了一个结构模型,其中 CSN9 的结合触发 CSN 采用一种有利于 CSN-CRL 相互作用的构象,从而增强 CSN 去泛素酶活性。我们的综合结构分析工作流程可以推广到定义其他方法无法获得的动态蛋白复合物的溶液结构。