Suppr超能文献

基于轮廓感知的多标签 chest X-ray 器官分割。

Contour-aware multi-label chest X-ray organ segmentation.

机构信息

Innopolis University, Innopolis, Russia.

Kazan Federal University, Kazan, Russia.

出版信息

Int J Comput Assist Radiol Surg. 2020 Mar;15(3):425-436. doi: 10.1007/s11548-019-02115-9. Epub 2020 Feb 7.

Abstract

PURPOSE

Segmentation of organs from chest X-ray images is an essential task for an accurate and reliable diagnosis of lung diseases and chest organ morphometry. In this study, we investigated the benefits of augmenting state-of-the-art deep convolutional neural networks (CNNs) for image segmentation with organ contour information and evaluated the performance of such augmentation on segmentation of lung fields, heart, and clavicles from chest X-ray images.

METHODS

Three state-of-the-art CNNs were augmented, namely the UNet and LinkNet architecture with the ResNeXt feature extraction backbone, and the Tiramisu architecture with the DenseNet. All CNN architectures were trained on ground-truth segmentation masks and additionally on the corresponding contours. The contribution of such contour-based augmentation was evaluated against the contour-free architectures, and 20 existing algorithms for lung field segmentation.

RESULTS

The proposed contour-aware segmentation improved the segmentation performance, and when compared against existing algorithms on the same publicly available database of 247 chest X-ray images, the UNet architecture with the ResNeXt50 encoder combined with the contour-aware approach resulted in the best overall segmentation performance, achieving a Jaccard overlap coefficient of 0.971, 0.933, and 0.903 for the lung fields, heart, and clavicles, respectively.

CONCLUSION

In this study, we proposed to augment CNN architectures for CXR segmentation with organ contour information and were able to significantly improve segmentation accuracy and outperform all existing solution using a public chest X-ray database.

摘要

目的

从胸部 X 光图像中分割器官是准确可靠地诊断肺部疾病和胸部器官形态计量学的关键任务。在这项研究中,我们研究了增强最先进的深度卷积神经网络(CNN)进行图像分割的优势,以获得器官轮廓信息,并评估了这种增强在从胸部 X 光图像中分割肺野、心脏和锁骨方面的性能。

方法

增强了三种最先进的 CNN,即带有 ResNeXt 特征提取骨干的 UNet 和 LinkNet 架构,以及带有 DenseNet 的 Tiramisu 架构。所有 CNN 架构都在真实分割掩模和相应轮廓上进行训练。评估了这种基于轮廓的增强对无轮廓架构的贡献,并与 20 种现有的肺野分割算法进行了比较。

结果

所提出的基于轮廓的分割方法提高了分割性能,当与同一公共 247 张胸部 X 光图像数据库中的现有算法进行比较时,带有 ResNeXt50 编码器的 UNet 架构与基于轮廓的方法相结合,在肺野、心脏和锁骨方面的整体分割性能最佳,Jaccard 重叠系数分别为 0.971、0.933 和 0.903。

结论

在这项研究中,我们提出了用器官轮廓信息增强用于 CXR 分割的 CNN 架构,并能够使用公共胸部 X 光数据库显著提高分割准确性,并优于所有现有解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验