Brau Fabian, De Wit A
Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, Faculté des Sciences, CP231, 1050 Brussels, Belgium.
J Chem Phys. 2020 Feb 7;152(5):054716. doi: 10.1063/1.5135292.
In the presence of advection at a constant flow rate in a rectilinear geometry, the properties of planar A + B → C reaction fronts feature the same temporal scalings as in the pure reaction-diffusion case. In a radial injection geometry where A is injected into B radially at a constant flow rate Q, temporal scalings are conserved, but the related coefficients depend on the injection flow rate Q and on the ratio γ of initial concentrations of the reactants. We show here that this dependence of the front properties on the radial velocity allows us to tune the amount of product obtained in the course of time by varying the flow rate. We compare theoretically the efficiency of the rectilinear and radial geometries by computing the amount of product C generated in the course of time or per volume of reactant injected. We show that a curve γ(Q) can be defined in the parameter space (γ, Q) below which, for similar experimental conditions, the total amount of C is larger in the radial case. In addition, another curve γ(Q) < γ(Q) can be defined such that for γ < γ, the total amount of C produced is larger in the radial geometry, even if the production of C per unit area of the contact interface between the two reactants is larger in the rectilinear case. This comes from the fact that the length of the contact zone increases with the radius in the radial case, which allows us to produce in fine more product C for a same injected volume of reactant or in reactors of a same volume than in the rectilinear case. These results pave the way to the geometrical optimization of the properties of chemical fronts.
在直线几何形状中存在以恒定流速的平流时,平面A + B → C反应前沿的性质具有与纯反应扩散情况相同的时间标度。在径向注入几何形状中,A以恒定流速Q径向注入B中,时间标度得以保留,但相关系数取决于注入流速Q和反应物初始浓度的比值γ。我们在此表明,前沿性质对径向速度的这种依赖性使我们能够通过改变流速来调节随时间获得的产物量。我们通过计算随时间或每注入单位体积反应物所产生的产物C的量,从理论上比较直线几何形状和径向几何形状的效率。我们表明,可以在参数空间(γ, Q)中定义一条曲线γ(Q),在该曲线以下,对于相似的实验条件,径向情况下C的总量更大。此外,可以定义另一条曲线γ(Q) < γ(Q),使得对于γ < γ,即使在直线情况下两种反应物之间接触界面的单位面积上C的产量更大,径向几何形状中产生的C的总量仍然更大。这是因为在径向情况下接触区的长度随半径增加,这使得我们在相同注入体积的反应物或相同体积的反应器中,最终能够比直线情况产生更多的产物C。这些结果为化学前沿性质的几何优化铺平了道路。