HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland.
HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland; CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Life Science Research Building 320, Yueyang Road, Xuhui District, 200031 Shanghai, China; University of Chinese Academy of Sciences, Yuquan Road No.19(A), Shijingshan District, 100049 Beijing, China.
Curr Biol. 2020 Mar 9;30(5):767-778.e5. doi: 10.1016/j.cub.2019.12.049. Epub 2020 Feb 6.
Eukaryotic cells have diverse protrusive and contractile actin filament structures, which compete with one another for a limited pool of actin monomers. Numerous actin-binding proteins regulate the dynamics of actin structures, including tropomodulins (Tmods), which cap the pointed end of actin filaments. In striated muscles, Tmods prevent actin filaments from overgrowing, whereas in non-muscle cells, their function has remained elusive. Here, we identify two Tmod isoforms, Tmod1 and Tmod3, as key components of contractile stress fibers in non-muscle cells. Individually, Tmod1 and Tmod3 can compensate for one another, but their simultaneous depletion results in disassembly of actin-tropomyosin filaments, loss of force-generating stress fibers, and severe defects in cell morphology. Knockout-rescue experiments reveal that Tmod's interaction with tropomyosin is essential for its role in the stabilization of actin-tropomyosin filaments in cells. Thus, in contrast to their role in muscle myofibrils, in non-muscle cells, Tmods bind actin-tropomyosin filaments to protect them from depolymerizing, not elongating. Furthermore, loss of Tmods shifts the balance from linear actin-tropomyosin filaments to Arp2/3 complex-nucleated branched networks, and this phenotype can be partially rescued by inhibiting the Arp2/3 complex. Collectively, the data reveal that Tmods are essential for the maintenance of contractile actomyosin bundles and that Tmod-dependent capping of actin-tropomyosin filaments is critical for the regulation of actin homeostasis in non-muscle cells.
真核细胞具有多种突起和收缩的肌动蛋白丝结构,这些结构相互竞争有限的肌动蛋白单体池。许多肌动蛋白结合蛋白调节肌动蛋白结构的动态,包括肌动蛋白丝顶端帽蛋白(Tmods)。在横纹肌中,Tmods 阻止肌动蛋白丝过度生长,而在非肌肉细胞中,其功能仍不清楚。在这里,我们鉴定了两种 Tmod 同工型,Tmod1 和 Tmod3,它们是非肌肉细胞收缩性应激纤维的关键组成部分。单独来看,Tmod1 和 Tmod3 可以相互补偿,但同时耗尽它们会导致肌动蛋白-原肌球蛋白丝的解体、产生力的应激纤维的丧失以及细胞形态的严重缺陷。敲除-拯救实验表明,Tmod 与原肌球蛋白的相互作用对于其在细胞中稳定肌动蛋白-原肌球蛋白丝的作用是必不可少的。因此,与它们在肌肉肌原纤维中的作用相反,在非肌肉细胞中,Tmod 结合肌动蛋白-原肌球蛋白丝以防止它们解聚,而不是延伸。此外,Tmod 的缺失会使线性肌动蛋白-原肌球蛋白丝向 Arp2/3 复合物引发的分支网络转变,而这种表型可以通过抑制 Arp2/3 复合物部分挽救。总的来说,这些数据表明 Tmod 对于维持收缩性肌动球蛋白束是必不可少的,并且 Tmod 依赖的肌动蛋白-原肌球蛋白丝的顶端帽对于调节非肌肉细胞中的肌动蛋白动态平衡至关重要。