Suppr超能文献

原肌球蛋白稳定蛋白通过稳定肌动蛋白-原肌球蛋白丝来控制伸出和收缩结构之间的平衡。

Tropomodulins Control the Balance between Protrusive and Contractile Structures by Stabilizing Actin-Tropomyosin Filaments.

机构信息

HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland.

HiLIFE Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland; CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Life Science Research Building 320, Yueyang Road, Xuhui District, 200031 Shanghai, China; University of Chinese Academy of Sciences, Yuquan Road No.19(A), Shijingshan District, 100049 Beijing, China.

出版信息

Curr Biol. 2020 Mar 9;30(5):767-778.e5. doi: 10.1016/j.cub.2019.12.049. Epub 2020 Feb 6.

Abstract

Eukaryotic cells have diverse protrusive and contractile actin filament structures, which compete with one another for a limited pool of actin monomers. Numerous actin-binding proteins regulate the dynamics of actin structures, including tropomodulins (Tmods), which cap the pointed end of actin filaments. In striated muscles, Tmods prevent actin filaments from overgrowing, whereas in non-muscle cells, their function has remained elusive. Here, we identify two Tmod isoforms, Tmod1 and Tmod3, as key components of contractile stress fibers in non-muscle cells. Individually, Tmod1 and Tmod3 can compensate for one another, but their simultaneous depletion results in disassembly of actin-tropomyosin filaments, loss of force-generating stress fibers, and severe defects in cell morphology. Knockout-rescue experiments reveal that Tmod's interaction with tropomyosin is essential for its role in the stabilization of actin-tropomyosin filaments in cells. Thus, in contrast to their role in muscle myofibrils, in non-muscle cells, Tmods bind actin-tropomyosin filaments to protect them from depolymerizing, not elongating. Furthermore, loss of Tmods shifts the balance from linear actin-tropomyosin filaments to Arp2/3 complex-nucleated branched networks, and this phenotype can be partially rescued by inhibiting the Arp2/3 complex. Collectively, the data reveal that Tmods are essential for the maintenance of contractile actomyosin bundles and that Tmod-dependent capping of actin-tropomyosin filaments is critical for the regulation of actin homeostasis in non-muscle cells.

摘要

真核细胞具有多种突起和收缩的肌动蛋白丝结构,这些结构相互竞争有限的肌动蛋白单体池。许多肌动蛋白结合蛋白调节肌动蛋白结构的动态,包括肌动蛋白丝顶端帽蛋白(Tmods)。在横纹肌中,Tmods 阻止肌动蛋白丝过度生长,而在非肌肉细胞中,其功能仍不清楚。在这里,我们鉴定了两种 Tmod 同工型,Tmod1 和 Tmod3,它们是非肌肉细胞收缩性应激纤维的关键组成部分。单独来看,Tmod1 和 Tmod3 可以相互补偿,但同时耗尽它们会导致肌动蛋白-原肌球蛋白丝的解体、产生力的应激纤维的丧失以及细胞形态的严重缺陷。敲除-拯救实验表明,Tmod 与原肌球蛋白的相互作用对于其在细胞中稳定肌动蛋白-原肌球蛋白丝的作用是必不可少的。因此,与它们在肌肉肌原纤维中的作用相反,在非肌肉细胞中,Tmod 结合肌动蛋白-原肌球蛋白丝以防止它们解聚,而不是延伸。此外,Tmod 的缺失会使线性肌动蛋白-原肌球蛋白丝向 Arp2/3 复合物引发的分支网络转变,而这种表型可以通过抑制 Arp2/3 复合物部分挽救。总的来说,这些数据表明 Tmod 对于维持收缩性肌动球蛋白束是必不可少的,并且 Tmod 依赖的肌动蛋白-原肌球蛋白丝的顶端帽对于调节非肌肉细胞中的肌动蛋白动态平衡至关重要。

相似文献

8
Tropomodulin caps the pointed ends of actin filaments.原肌球蛋白封闭肌动蛋白丝的尖端。
J Cell Biol. 1994 Dec;127(6 Pt 1):1627-35. doi: 10.1083/jcb.127.6.1627.

引用本文的文献

本文引用的文献

5
Tensile Forces and Mechanotransduction at Cell-Cell Junctions.细胞连接处的张力和机械转导。
Curr Biol. 2018 Apr 23;28(8):R445-R457. doi: 10.1016/j.cub.2018.02.003.
7
UNC-45a promotes myosin folding and stress fiber assembly.UNC-45a促进肌球蛋白折叠和应力纤维组装。
J Cell Biol. 2017 Dec 4;216(12):4053-4072. doi: 10.1083/jcb.201703107. Epub 2017 Oct 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验