Kishida M, Baker B I, Bird D J
School of Biological Sciences, Bath University, Claverton Down, England.
Gen Comp Endocrinol. 1988 Aug;71(2):229-42. doi: 10.1016/0016-6480(88)90251-1.
The existence of melanocyte-stimulating hormone (MSH) in fish brains was investigated by a range of techniques: radioimmunoassay, HPLC, bioassay, and immunocytochemistry. Immunoreactive alpha MSH (ir alpha MSH) was detected by radioimmunoassay in all regions of carp and trout brains, with the highest concentration in the basal hypothalamus. In trout, ir alpha MSH cell bodies were located by immunocytochemistry only periventricularly, in the medial basal hypothalamus near the third ventricle, whereas in the carp ir alpha MSH staining was seen both in periventricular cells and also in some of the magnocellular neurones in the lateral hypothalamus. When white-adapted fish were transferred to a black tank for 6 days, the melanin-concentrating hormone (MCH) content of the basal hypothalamus of both carp and trout increased 2- and 4.6-fold, respectively, but the alpha MSH content did not change in either species. Analysis by HPLC of pituitary gland, hypothalamic, and optic tectal extracts revealed that the pituitary contains desacetyl, monoacetyl, and diacetyl alpha MSH, although the ratio of these forms differed in the two species. The hypothalamus and optic tectum, however, contained predominantly the desacetyl form of alpha MSH. Bioassays for MSH in the HPLC fractions revealed the existence of presumptive beta MSH in both the pituitary and hypothalamus. An argument is advanced that the periventricular ir alpha MSH neurones are homologous with the proopiomelanocortin cells of the arcuate nucleus in mammals, and that the immunocytochemical alpha MSH-like activity in the MCH neurones may not be authentic alpha MSH.