Suppr超能文献

自发性瞬时腺苷的复杂性别和动情周期差异。

Complex sex and estrous cycle differences in spontaneous transient adenosine.

机构信息

Department of Chemistry, University of Virginia, Charlottesville, VA, USA.

出版信息

J Neurochem. 2020 Apr;153(2):216-229. doi: 10.1111/jnc.14981. Epub 2020 Mar 2.

Abstract

Adenosine is a ubiquitous neuromodulator that plays a role in sleep, vasodilation, and immune response and manipulating the adenosine system could be therapeutic for Parkinson's disease or ischemic stroke. Spontaneous transient adenosine release provides rapid neuromodulation; however, little is known about the effect of sex as a biological variable on adenosine signaling and this is vital information for designing therapeutics. Here, we investigate sex differences in spontaneous, transient adenosine release using fast-scan cyclic voltammetry to measure adenosine in vivo in the hippocampus CA1, basolateral amygdala, and prefrontal cortex. The frequency and concentration of transient adenosine release were compared by sex and brain region, and in females, the stage of estrous. Females had larger concentration transients in the hippocampus (0.161 ± 0.003 µM) and the amygdala (0.182 ± 0.006 µM) than males (hippocampus: 0.134 ± 0.003, amygdala: 0.115 ± 0.002 µM), but the males had a higher frequency of events. In the prefrontal cortex, the trends were reversed. Males had higher concentrations (0.189 ± 0.003 µM) than females (0.170 ± 0.002 µM), but females had higher frequencies. Examining stages of the estrous cycle, in the hippocampus, adenosine transients are higher concentration during proestrus and diestrus. In the cortex, adenosine transients were higher in concentration during proestrus, but were lower during all other stages. Thus, sex and estrous cycle differences in spontaneous adenosine are complex, and not completely consistent from region to region. Understanding these complex differences in spontaneous adenosine between the sexes and during different stages of estrous is important for designing effective treatments manipulating adenosine as a neuromodulator.

摘要

腺苷是一种普遍存在的神经调质,在睡眠、血管舒张和免疫反应中发挥作用,调节腺苷系统可能对帕金森病或缺血性中风具有治疗作用。自发短暂的腺苷释放提供了快速的神经调制;然而,关于性别作为生物变量对腺苷信号的影响知之甚少,这对于设计治疗方法至关重要。在这里,我们使用快速扫描循环伏安法在海马 CA1、基底外侧杏仁核和前额叶皮层中测量体内腺苷,研究了性别差异对自发、短暂的腺苷释放的影响。通过性别和脑区比较了瞬时腺苷释放的频率和浓度,并在雌性中,比较了发情周期的阶段。雌性在海马体(0.161±0.003µM)和杏仁核(0.182±0.006µM)中的浓度瞬变大于雄性(海马体:0.134±0.003,杏仁核:0.115±0.002µM),但雄性事件的频率更高。在前额叶皮层中,趋势相反。雄性的浓度更高(0.189±0.003µM),而雌性(0.170±0.002µM),但雌性的频率更高。检查发情周期的阶段,在海马体中,腺苷瞬变在发情前期和发情期更高。在皮层中,在发情前期腺苷瞬变的浓度更高,但在所有其他阶段的浓度都较低。因此,性和发情周期对自发腺苷的差异是复杂的,而且在不同的区域并不完全一致。了解两性之间以及发情周期不同阶段自发腺苷的这些复杂差异,对于设计有效的治疗方法以调节作为神经调质的腺苷非常重要。

相似文献

1
Complex sex and estrous cycle differences in spontaneous transient adenosine.
J Neurochem. 2020 Apr;153(2):216-229. doi: 10.1111/jnc.14981. Epub 2020 Mar 2.
2
Sex and estrous cycle-dependent differences in glial fibrillary acidic protein immunoreactivity in the adult rat hippocampus.
Horm Behav. 2009 Jan;55(1):257-63. doi: 10.1016/j.yhbeh.2008.10.016. Epub 2008 Nov 13.
4
Sex- and Estrus-Dependent Differences in Rat Basolateral Amygdala.
J Neurosci. 2017 Nov 1;37(44):10567-10586. doi: 10.1523/JNEUROSCI.0758-17.2017. Epub 2017 Sep 27.
5
Rat estrous cycle influences the sexual diergism of HPA axis stimulation by nicotine.
Brain Res Bull. 2004 Sep 30;64(3):205-13. doi: 10.1016/j.brainresbull.2004.06.011.
6
Regional Variations of Spontaneous, Transient Adenosine Release in Brain Slices.
ACS Chem Neurosci. 2018 Mar 21;9(3):505-513. doi: 10.1021/acschemneuro.7b00280. Epub 2017 Nov 27.
7
Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.
PLoS One. 2014 Jan 29;9(1):e87165. doi: 10.1371/journal.pone.0087165. eCollection 2014.
8
Estrous cycle stage gates sex differences in prefrontal muscarinic control of fear memory formation.
Neurobiol Learn Mem. 2019 May;161:26-36. doi: 10.1016/j.nlm.2019.03.001. Epub 2019 Mar 6.
9
Sex Differences and Estrous Cycle Effects of Peripheral Serotonin-Evoked Rodent Pain Behaviors.
Neuroscience. 2018 Aug 1;384:87-100. doi: 10.1016/j.neuroscience.2018.05.017. Epub 2018 May 23.
10

引用本文的文献

1
Pyrolyzed Parylene-N for Electrochemical Detection of Neurotransmitters.
ACS Electrochem. 2025 Mar 27;1(5):730-740. doi: 10.1021/acselectrochem.4c00180. eCollection 2025 May 1.
2
Microglia modulate the cerebrovascular reactivity through ectonucleotidase CD39.
Nat Commun. 2025 Jan 22;16(1):956. doi: 10.1038/s41467-025-56093-5.
3
Impact of Coffee Intake on Measures of Wellbeing in Mice.
Nutrients. 2024 Sep 1;16(17):2920. doi: 10.3390/nu16172920.
4
On the basis of sex and sleep: the influence of the estrous cycle and sex on sleep-wake behavior.
Front Neurosci. 2024 Aug 29;18:1426189. doi: 10.3389/fnins.2024.1426189. eCollection 2024.
5
A2AR-mediated lymphangiogenesis via VEGFR2 signaling prevents salt-sensitive hypertension.
Eur Heart J. 2023 Aug 1;44(29):2730-2742. doi: 10.1093/eurheartj/ehad377.
7
Accurate and stable chronic voltammetry enabled by a replaceable subcutaneous reference electrode.
iScience. 2022 Aug 2;25(8):104845. doi: 10.1016/j.isci.2022.104845. eCollection 2022 Aug 19.
8
Sex-Specific Immune Responses in Stroke.
Stroke. 2022 May;53(5):1449-1459. doi: 10.1161/STROKEAHA.122.036945. Epub 2022 Apr 25.
9
Pannexin1 channels regulate mechanically stimulated but not spontaneous adenosine release.
Anal Bioanal Chem. 2022 May;414(13):3781-3789. doi: 10.1007/s00216-022-04047-x. Epub 2022 Apr 5.
10
Spontaneous Adenosine and Dopamine Cotransmission in the Caudate-Putamen Is Regulated by Adenosine Receptors.
ACS Chem Neurosci. 2021 Dec 1;12(23):4371-4379. doi: 10.1021/acschemneuro.1c00175. Epub 2021 Nov 16.

本文引用的文献

1
Fundamentals of fast-scan cyclic voltammetry for dopamine detection.
Analyst. 2020 Feb 17;145(4):1158-1168. doi: 10.1039/c9an01586h.
2
Electrochemistry at the Synapse.
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):297-321. doi: 10.1146/annurev-anchem-061318-115434. Epub 2019 Feb 1.
3
New Developments on the Adenosine Mechanisms of the Central Effects of Caffeine and Their Implications for Neuropsychiatric Disorders.
J Caffeine Adenosine Res. 2018 Dec 1;8(4):121-131. doi: 10.1089/caff.2018.0017. Epub 2018 Dec 7.
4
Comparison of spontaneous and mechanically-stimulated adenosine release in mice.
Neurochem Int. 2019 Mar;124:46-50. doi: 10.1016/j.neuint.2018.12.007. Epub 2018 Dec 20.
5
Caffeine Modulates Spontaneous Adenosine and Oxygen Changes during Ischemia and Reperfusion.
ACS Chem Neurosci. 2019 Apr 17;10(4):1941-1949. doi: 10.1021/acschemneuro.8b00251. Epub 2018 Oct 9.
6
Early changes in transient adenosine during cerebral ischemia and reperfusion injury.
PLoS One. 2018 May 25;13(5):e0196932. doi: 10.1371/journal.pone.0196932. eCollection 2018.
7
Mechanisms of Sex Differences in Fear and Posttraumatic Stress Disorder.
Biol Psychiatry. 2018 May 15;83(10):876-885. doi: 10.1016/j.biopsych.2017.11.016. Epub 2017 Nov 21.
8
Regional Variations of Spontaneous, Transient Adenosine Release in Brain Slices.
ACS Chem Neurosci. 2018 Mar 21;9(3):505-513. doi: 10.1021/acschemneuro.7b00280. Epub 2017 Nov 27.
9
Automated Algorithm for Detection of Transient Adenosine Release.
ACS Chem Neurosci. 2017 Feb 15;8(2):386-393. doi: 10.1021/acschemneuro.6b00262. Epub 2016 Dec 8.
10
Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods.
Anal Chem. 2017 Jan 3;89(1):314-341. doi: 10.1021/acs.analchem.6b04278. Epub 2016 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验