Suppr超能文献

两种手性螺旋的共存导致了游泳中的扭曲平移。

Coexistence of Two Chiral Helices Produces Kink Translation in Swimming.

机构信息

Department of Physics, Gakushuin University, Tokyo, Japan

Department of Physics, Gakushuin University, Tokyo, Japan.

出版信息

J Bacteriol. 2020 Mar 26;202(8). doi: 10.1128/JB.00735-19.

Abstract

The mechanism underlying swimming is an enigma. This small bacterium possesses two helical shapes with opposite-handedness at a time, and the boundary between them, called a kink, travels down, possibly accompanying the dual rotations of these physically connected helical structures, without any rotary motors such as flagella. Although the outline of dynamics and structural basis has been proposed, the underlying cause to explain the kink translation is missing. We here demonstrated that the cell morphology of was fixed at the right-handed helix after motility was stopped by the addition of carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the preferential state was transformed to the other-handedness by the trigger of light irradiation. This process coupled with the generation and propagation of the artificial kink, presumably without any energy input through biological motors. These findings indicate that the coexistence of two chiral helices is sufficient to propagate the kink and thus to propel the cell body. Many swimming bacteria generate a propulsion force by rotating helical filaments like a propeller. However, the nonflagellated bacteria spp. swim without the use of the appendages. The tiny wall-less bacteria possess two chiral helices at a time, and the boundary called a kink travels down, possibly accompanying the dual rotations of the helices. To solve this enigma, we developed an assay to determine the handedness of the body helices at the single-wind level, and demonstrated that the coexistence of body helices triggers the translation of the kink and that the cell body moves by the resultant cell bend propagation. This finding provides us a totally new aspect of bacterial motility, where the body functions as a transformable screw to propel itself forward.

摘要

游泳的机制尚不清楚。这种小型细菌一次拥有两个螺旋形状,且螺旋的旋向相反,而它们之间的边界称为纽结,沿着螺旋向下移动,可能伴随着这两个物理上相连的螺旋结构的双重旋转,而无需任何旋转马达,如鞭毛。虽然已经提出了动力学和结构基础的轮廓,但仍缺少解释纽结迁移的根本原因。我们在这里证明,在添加羰基氰化物 3-氯苯腙(CCCP)以停止运动后, 的细胞形态被固定在右手螺旋上,并且通过光照射的触发,优先状态被转化为另一种旋向。这个过程伴随着人工纽结的产生和传播,大概不需要通过生物马达输入任何能量。这些发现表明,两个手性螺旋的共存足以传播纽结并从而推动细胞体。许多游动细菌通过像螺旋桨一样旋转螺旋丝来产生推进力。然而,无鞭毛的 spp. 细菌则无需使用附属物就能游动。微小的无壁细菌一次拥有两个手性螺旋,并且称为纽结的边界向下移动,可能伴随着螺旋的双重旋转。为了解决这个谜团,我们开发了一种测定单个螺旋水平上体螺旋旋向的测定方法,并证明体螺旋的共存触发了纽结的迁移,并且细胞体通过扭结传播产生的细胞弯曲而移动。这一发现为我们提供了细菌运动的一个全新方面,其中身体作为一个可变形的螺旋来推动自身前进。

相似文献

1
Coexistence of Two Chiral Helices Produces Kink Translation in Swimming.
J Bacteriol. 2020 Mar 26;202(8). doi: 10.1128/JB.00735-19.
2
Swimming Motility Assays of Spiroplasma.
Methods Mol Biol. 2023;2646:373-381. doi: 10.1007/978-1-0716-3060-0_31.
3
Kinematics of the swimming of Spiroplasma.
Phys Rev Lett. 2009 May 29;102(21):218102. doi: 10.1103/PhysRevLett.102.218102. Epub 2009 May 28.
4
The bacterial linear motor of Spiroplasma melliferum BC3: from single molecules to swimming cells.
Mol Microbiol. 2003 Feb;47(3):671-97. doi: 10.1046/j.1365-2958.2003.t01-1-03200.x.
5
Prospects for the Mechanism of Swimming.
Front Microbiol. 2021 Aug 27;12:706426. doi: 10.3389/fmicb.2021.706426. eCollection 2021.
6
Hydrodynamics of helical-shaped bacterial motility.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021921. doi: 10.1103/PhysRevE.80.021921. Epub 2009 Aug 19.
7
MreB5 Is a Determinant of Rod-to-Helical Transition in the Cell-Wall-less Bacterium Spiroplasma.
Curr Biol. 2020 Dec 7;30(23):4753-4762.e7. doi: 10.1016/j.cub.2020.08.093. Epub 2020 Sep 24.
8
Spiroplasma swim by a processive change in body helicity.
Cell. 2005 Sep 23;122(6):941-5. doi: 10.1016/j.cell.2005.07.004.
9
Model for self-propulsive helical filaments: kink-pair propagation.
Phys Rev Lett. 2007 Sep 7;99(10):108102. doi: 10.1103/PhysRevLett.99.108102.
10
Cytoskeletal components can turn wall-less spherical bacteria into kinking helices.
Nat Commun. 2022 Nov 14;13(1):6930. doi: 10.1038/s41467-022-34478-0.

引用本文的文献

1
Gliding direction of correlates with the curved configuration of its cell shape.
Biophys Physicobiol. 2025 Feb 26;22(1):e220006. doi: 10.2142/biophysico.bppb-v22.0006. eCollection 2025.
2
Assembly properties of bacterial actin MreB involved in Spiroplasma swimming motility.
J Biol Chem. 2023 Jun;299(6):104793. doi: 10.1016/j.jbc.2023.104793. Epub 2023 May 5.
3
Sequence analyses of a lipoprotein conserved with bacterial actins responsible for swimming motility of wall-less helical .
MicroPubl Biol. 2023 Mar 15;2023. doi: 10.17912/micropub.biology.000713. eCollection 2023.
4
Swimming Motility Assays of Spiroplasma.
Methods Mol Biol. 2023;2646:373-381. doi: 10.1007/978-1-0716-3060-0_31.
5
Purification and ATPase Activity Measurement of Spiroplasma MreB.
Methods Mol Biol. 2023;2646:359-371. doi: 10.1007/978-1-0716-3060-0_30.
6
Reconstitution of a minimal motility system based on swimming by two bacterial actins in a synthetic minimal bacterium.
Sci Adv. 2022 Dec 2;8(48):eabo7490. doi: 10.1126/sciadv.abo7490. Epub 2022 Nov 30.
7
ATP-dependent polymerization dynamics of bacterial actin proteins involved in swimming.
Open Biol. 2022 Oct;12(10):220083. doi: 10.1098/rsob.220083. Epub 2022 Oct 26.
8
Prospects for the Mechanism of Swimming.
Front Microbiol. 2021 Aug 27;12:706426. doi: 10.3389/fmicb.2021.706426. eCollection 2021.

本文引用的文献

1
Large variability in the motility of spiroplasmas in media of different viscosities.
Sci Rep. 2018 Nov 20;8(1):17138. doi: 10.1038/s41598-018-35326-2.
2
Male-killing toxin in a bacterial symbiont of Drosophila.
Nature. 2018 May;557(7704):252-255. doi: 10.1038/s41586-018-0086-2. Epub 2018 May 2.
3
Dynamics of a Protein Chain Motor Driving Helical Bacteria under Stress.
Biophys J. 2018 Apr 24;114(8):1955-1969. doi: 10.1016/j.bpj.2018.02.043.
4
Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6593-6598. doi: 10.1073/pnas.1702395114. Epub 2017 Jun 5.
6
Antibiotics induce redox-related physiological alterations as part of their lethality.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):E2100-9. doi: 10.1073/pnas.1401876111. Epub 2014 May 6.
8
Spiroplasma eriocheiris sp. nov., associated with mortality in the Chinese mitten crab, Eriocheir sinensis.
Int J Syst Evol Microbiol. 2011 Apr;61(Pt 4):703-708. doi: 10.1099/ijs.0.020529-0. Epub 2010 Apr 23.
9
Kinematics of the swimming of Spiroplasma.
Phys Rev Lett. 2009 May 29;102(21):218102. doi: 10.1103/PhysRevLett.102.218102. Epub 2009 May 28.
10
Model for self-propulsive helical filaments: kink-pair propagation.
Phys Rev Lett. 2007 Sep 7;99(10):108102. doi: 10.1103/PhysRevLett.99.108102.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验