Suppr超能文献

基于模型的推断和分类:TKI 停药和剂量减少对 CML 患者免疫控制机制的影响。

Model-Based Inference and Classification of Immunologic Control Mechanisms from TKI Cessation and Dose Reduction in Patients with CML.

机构信息

Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

INSERM CIC 1402 - CHU Poitiers, Poitiers, France.

出版信息

Cancer Res. 2020 Jun 1;80(11):2394-2406. doi: 10.1158/0008-5472.CAN-19-2175. Epub 2020 Feb 10.

Abstract

Recent clinical findings in patients with chronic myeloid leukemia (CML) suggest that the risk of molecular recurrence after stopping tyrosine kinase inhibitor (TKI) treatment substantially depends on an individual's leukemia-specific immune response. However, it is still not possible to prospectively identify patients that will remain in treatment-free remission (TFR). Here, we used an ordinary differential equation model for CML, which explicitly includes an antileukemic immunologic effect, and applied it to 21 patients with CML for whom time courses had been quantified before and after TKI cessation. Immunologic control was conceptually necessary to explain TFR as observed in about half of the patients. Fitting the model simulations to data, we identified patient-specific parameters and classified patients into three different groups according to their predicted immune system configuration ("immunologic landscapes"). While one class of patients required complete CML eradication to achieve TFR, other patients were able to control residual leukemia levels after treatment cessation. Among them were a third class of patients that maintained TFR only if an optimal balance between leukemia abundance and immunologic activation was achieved before treatment cessation. Model simulations further suggested that changes in the dynamics resulting from TKI dose reduction convey information about the patient-specific immune system and allow prediction of outcome after treatment cessation. This inference of individual immunologic configurations based on treatment alterations can also be applied to other cancer types in which the endogenous immune system supports maintenance therapy, long-term disease control, or even cure. SIGNIFICANCE: This mathematical modeling approach provides strong evidence that different immunologic configurations in patients with CML determine their response to therapy cessation and that dose reductions can help to prospectively infer different risk groups..

摘要

最近在慢性髓性白血病(CML)患者中的临床发现表明,停止酪氨酸激酶抑制剂(TKI)治疗后发生分子复发的风险在很大程度上取决于个体的白血病特异性免疫反应。然而,目前还不可能前瞻性地识别出将保持无治疗缓解(TFR)的患者。在这里,我们使用了一个包含抗白血病免疫效应的 CML 常微分方程模型,并将其应用于 21 名 CML 患者,这些患者在停止 TKI 前后的时间过程已被量化。免疫控制是解释约一半患者中观察到的 TFR 所必需的概念。通过将模型模拟拟合到数据中,我们确定了患者特异性参数,并根据其预测的免疫系统配置将患者分为三类不同的组(“免疫景观”)。虽然一类患者需要完全消除 CML 才能实现 TFR,但其他患者在停止治疗后能够控制残留白血病水平。其中,第三类患者只有在停止治疗前达到白血病丰度和免疫激活之间的最佳平衡,才能维持 TFR。模型模拟进一步表明,TKI 剂量减少引起的动力学变化传达了关于患者特异性免疫系统的信息,并允许预测治疗停止后的结果。这种基于治疗改变推断个体免疫构型的方法也可应用于其他癌症类型,其中内源性免疫系统支持维持治疗、长期疾病控制甚至治愈。意义:这种数学建模方法提供了强有力的证据,表明 CML 患者的不同免疫构型决定了他们对治疗停止的反应,并且剂量减少可以帮助前瞻性地推断出不同的风险组。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验