Suppr超能文献

临床研究与患者护理之间的数据整合:一个用于依赖上下文的数据共享和计算机模拟预测的框架。

Data integration between clinical research and patient care: A framework for context-depending data sharing and in silico predictions.

作者信息

Hoffmann Katja, Pelz Anne, Karg Elena, Gottschalk Andrea, Zerjatke Thomas, Schuster Silvio, Böhme Heiko, Glauche Ingmar, Roeder Ingo

机构信息

Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.

出版信息

PLOS Digit Health. 2023 May 15;2(5):e0000140. doi: 10.1371/journal.pdig.0000140. eCollection 2023 May.

Abstract

The transfer of new insights from basic or clinical research into clinical routine is usually a lengthy and time-consuming process. Conversely, there are still many barriers to directly provide and use routine data in the context of basic and clinical research. In particular, no coherent software solution is available that allows a convenient and immediate bidirectional transfer of data between concrete treatment contexts and research settings. Here, we present a generic framework that integrates health data (e.g., clinical, molecular) and computational analytics (e.g., model predictions, statistical evaluations, visualizations) into a clinical software solution which simultaneously supports both patient-specific healthcare decisions and research efforts, while also adhering to the requirements for data protection and data quality. Specifically, our work is based on a recently established generic data management concept, for which we designed and implemented a web-based software framework that integrates data analysis, visualization as well as computer simulation and model prediction with audit trail functionality and a regulation-compliant pseudonymization service. Within the front-end application, we established two tailored views: a clinical (i.e., treatment context) perspective focusing on patient-specific data visualization, analysis and outcome prediction and a research perspective focusing on the exploration of pseudonymized data. We illustrate the application of our generic framework by two use-cases from the field of haematology/oncology. Our implementation demonstrates the feasibility of an integrated generation and backward propagation of data analysis results and model predictions at an individual patient level into clinical decision-making processes while enabling seamless integration into a clinical information system or an electronic health record.

摘要

将基础研究或临床研究中的新见解转化为临床常规应用通常是一个漫长且耗时的过程。相反,在基础研究和临床研究中直接提供和使用常规数据仍存在许多障碍。特别是,目前还没有一个连贯的软件解决方案能够在具体治疗情境和研究环境之间方便快捷地进行双向数据传输。在此,我们提出一个通用框架,该框架将健康数据(如临床数据、分子数据)和计算分析(如模型预测、统计评估、可视化)集成到一个临床软件解决方案中,该方案同时支持针对患者的医疗决策和研究工作,同时还符合数据保护和数据质量要求。具体而言,我们的工作基于最近建立的通用数据管理概念,为此我们设计并实现了一个基于网络的软件框架,该框架将数据分析、可视化以及计算机模拟和模型预测与审计跟踪功能和符合法规的假名化服务集成在一起。在前端应用程序中,我们建立了两个定制视图:一个临床(即治疗情境)视角,专注于患者特定数据的可视化、分析和结果预测;另一个研究视角,专注于对假名化数据的探索。我们通过血液学/肿瘤学领域的两个用例来说明我们通用框架的应用。我们的实施证明了在个体患者层面将数据分析结果和模型预测进行综合生成并向后传播到临床决策过程中的可行性,同时能够无缝集成到临床信息系统或电子健康记录中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef9b/10184916/6e301adadff5/pdig.0000140.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验