Suppr超能文献

淀粉核鞘对于绿藻中 LCIB 的定位和 CO2 浓缩机制是必需的。

Pyrenoid Starch Sheath Is Required for LCIB Localization and the CO-Concentrating Mechanism in Green Algae.

机构信息

Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.

Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan

出版信息

Plant Physiol. 2020 Apr;182(4):1883-1893. doi: 10.1104/pp.19.01587. Epub 2020 Feb 10.

Abstract

Aquatic photosynthetic organisms induce a CO-concentrating mechanism (CCM) to overcome the difficulty of acquiring inorganic carbon under CO-limiting conditions. As part of the CCM, the CO-fixing enzyme Rubisco is enriched in the pyrenoid located in the chloroplast, and, in many green algae, several thick starch plates surround the pyrenoid to form a starch sheath. In , low-CO-inducible protein B (LCIB), which is an essential factor for the CCM, displays altered cellular localization in response to a decrease in environmental CO concentration, moving from dispersed throughout the chloroplast stroma to around the pyrenoid. However, the mechanism behind LCIB migration remains poorly understood. Here, we report the characteristics of an -less mutant (4-D1), which shows aberrant LCIB localization and starch sheath formation. Under very-low-CO conditions, 4-D1 showed retarded growth, lower photosynthetic affinities against inorganic carbon, and a decreased accumulation level of the HCO transporter HLA3. The aberrant localization of LCIB was also observed in another starch-sheathless mutant -, but not in -, which possesses a thinned starch sheath. These results suggest that the starch sheath around the pyrenoid is required for the correct localization of LCIB and for the operation of CCM.

摘要

水生光合生物诱导 CO 浓缩机制(CCM)来克服在 CO 限制条件下获取无机碳的困难。作为 CCM 的一部分,CO 固定酶 Rubisco 在位于叶绿体中的淀粉核中富集,并且在许多绿藻中,几个厚的淀粉板围绕淀粉核形成淀粉鞘。在 中,低 CO 诱导蛋白 B(LCIB)是 CCM 的必需因素,其细胞定位会因环境 CO 浓度的降低而发生改变,从分散在整个叶绿体基质中移动到淀粉核周围。然而,LCIB 迁移的机制仍知之甚少。在这里,我们报道了一个 -less 突变体(4-D1)的特征,该突变体显示出异常的 LCIB 定位和淀粉鞘形成。在极低 CO 条件下,4-D1 的生长缓慢,对无机碳的光合亲和力降低,HCO3 转运蛋白 HLA3 的积累水平降低。LCIB 的异常定位也在另一个无淀粉鞘突变体 - 中观察到,但在 - 中没有观察到,后者的淀粉鞘较薄。这些结果表明,淀粉核周围的淀粉鞘对于 LCIB 的正确定位和 CCM 的运作是必需的。

相似文献

1
Pyrenoid Starch Sheath Is Required for LCIB Localization and the CO-Concentrating Mechanism in Green Algae.
Plant Physiol. 2020 Apr;182(4):1883-1893. doi: 10.1104/pp.19.01587. Epub 2020 Feb 10.
2
CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii.
Plant Physiol. 2022 Feb 4;188(2):1081-1094. doi: 10.1093/plphys/kiab528.
5
Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii.
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7315-20. doi: 10.1073/pnas.1501659112. Epub 2015 May 26.
7
Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12586-12591. doi: 10.1073/pnas.1606519113. Epub 2016 Oct 17.
8
Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae.
New Phytol. 2020 Aug;227(3):810-823. doi: 10.1111/nph.16577. Epub 2020 May 13.

引用本文的文献

2
Phototropin connects blue light perception to starch metabolism in green algae.
Nat Commun. 2025 Mar 15;16(1):2545. doi: 10.1038/s41467-025-57809-3.
3
SAGA1 and MITH1 produce matrix-traversing membranes in the CO-fixing pyrenoid.
Nat Plants. 2024 Dec;10(12):2038-2051. doi: 10.1038/s41477-024-01847-0. Epub 2024 Nov 15.
6
SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in Arabidopsis chloroplasts.
Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2311013121. doi: 10.1073/pnas.2311013121. Epub 2024 Jan 19.
7
Chloroplast Methyltransferase Homolog RMT2 is Involved in Photosystem I Biogenesis.
bioRxiv. 2024 Apr 5:2023.12.21.572672. doi: 10.1101/2023.12.21.572672.
8
The pyrenoid: the eukaryotic CO2-concentrating organelle.
Plant Cell. 2023 Sep 1;35(9):3236-3259. doi: 10.1093/plcell/koad157.
9
A phase-separated CO2-fixing pyrenoid proteome determined by TurboID in Chlamydomonas reinhardtii.
Plant Cell. 2023 Sep 1;35(9):3260-3279. doi: 10.1093/plcell/koad131.
10
Adapting from Low to High: An Update to CO-Concentrating Mechanisms of Cyanobacteria and Microalgae.
Plants (Basel). 2023 Apr 6;12(7):1569. doi: 10.3390/plants12071569.

本文引用的文献

1
A Rubisco-binding protein is required for normal pyrenoid number and starch sheath morphology in .
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18445-18454. doi: 10.1073/pnas.1904587116. Epub 2019 Aug 27.
2
Thylakoid localized bestrophin-like proteins are essential for the CO concentrating mechanism of .
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16915-16920. doi: 10.1073/pnas.1909706116. Epub 2019 Aug 7.
3
The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger.
Nat Commun. 2018 Nov 29;9(1):5076. doi: 10.1038/s41467-018-07624-w.
4
Intelligent Image-Activated Cell Sorting.
Cell. 2018 Sep 20;175(1):266-276.e13. doi: 10.1016/j.cell.2018.08.028. Epub 2018 Aug 27.
5
Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii.
PLoS One. 2018 Feb 26;13(2):e0185039. doi: 10.1371/journal.pone.0185039. eCollection 2018.
6
High-resolution suborganellar localization of Ca-binding protein CAS, a novel regulator of CO-concentrating mechanism.
Protoplasma. 2018 Jul;255(4):1015-1022. doi: 10.1007/s00709-018-1208-2. Epub 2018 Jan 25.
7
The Eukaryotic CO-Concentrating Organelle Is Liquid-like and Exhibits Dynamic Reorganization.
Cell. 2017 Sep 21;171(1):148-162.e19. doi: 10.1016/j.cell.2017.08.008.
8
A Spatial Interactome Reveals the Protein Organization of the Algal CO-Concentrating Mechanism.
Cell. 2017 Sep 21;171(1):133-147.e14. doi: 10.1016/j.cell.2017.08.044.
9
The algal pyrenoid: key unanswered questions.
J Exp Bot. 2017 Jun 1;68(14):3739-3749. doi: 10.1093/jxb/erx178.
10
The Chlamydomonas CO -concentrating mechanism and its potential for engineering photosynthesis in plants.
New Phytol. 2018 Jan;217(1):54-61. doi: 10.1111/nph.14749. Epub 2017 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验