Serrà Albert, Artal Raül, García-Amorós Jaume, Sepúlveda Borja, Gómez Elvira, Nogués Josep, Philippe Laetitia
Empa Swiss Federal Laboratories for Materials Science and Technology Laboratory for Mechanics of Materials and Nanostructures Feuerwerkerstrasse 39 CH-3602 Thun Switzerland.
Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN) Departament de Ciència de Materials i Química Física Universitat de Barcelona Martí i Franquès, 1 E-08028 Barcelona Catalonia Spain.
Adv Sci (Weinh). 2019 Dec 12;7(3):1902447. doi: 10.1002/advs.201902447. eCollection 2020 Feb.
Water remediation and development of carbon-neutral fuels are a priority for the evermore industrialized society. The answer to these challenges should be simple, sustainable, and inexpensive. Thus, biomimetic-inspired circular and holistic processes combing water remediation and biofuel production can be an appealing concept to deal with these global issues. A simple circular approach using helical microalgae as biotemplates to synthesize Ni@ZnO@ZnS photocatalysts for efficient solar water decontamination and bioethanol production during the recycling process is presented. Under solar irradiation, the Ni@ZnO@ZnS- photocatalyst exhibits enhanced activity (mineralization efficiency >99%) with minimal photocorrosion and excellent reusability. At the end of its effective lifetime for water remediation, the microalgae skeleton (mainly glycogen and glucose) of the photocatalyst is recycled to directly produce bioethanol by simultaneous saccharification and fermentation process. An outstanding ethanol yield of 0.4 L kg, which is similar to the highest yield obtained from oxygenic photosynthetic microorganisms, is obtained. Thus, the entire process allows effective solar photocatalytic water remediation and bioethanol production at room temperature using simple and easily scalable procedures that simultaneously fixes carbon dioxide, thereby constituting a zero-carbon-emission circular process.
水修复和碳中和燃料的开发是日益工业化的社会的优先事项。应对这些挑战的答案应该简单、可持续且成本低廉。因此,受仿生启发的将水修复和生物燃料生产相结合的循环和整体过程可能是应对这些全球问题的一个有吸引力的概念。本文提出了一种简单的循环方法,利用螺旋微藻作为生物模板来合成Ni@ZnO@ZnS光催化剂,以便在循环过程中高效地进行太阳能水净化和生物乙醇生产。在太阳辐射下,Ni@ZnO@ZnS光催化剂表现出增强的活性(矿化效率>99%),光腐蚀最小且具有出色的可重复使用性。在其用于水修复的有效寿命结束时,光催化剂的微藻骨架(主要是糖原和葡萄糖)被回收,通过同时糖化和发酵过程直接生产生物乙醇。获得了0.4 L/kg的优异乙醇产量,这与从产氧光合微生物获得的最高产量相似。因此,整个过程允许在室温下使用简单且易于扩展的程序进行有效的太阳能光催化水修复和生物乙醇生产,同时固定二氧化碳,从而构成一个零碳排放的循环过程。
Micromachines (Basel). 2024-3-29
Adv Sci (Weinh). 2021-2-22
Front Bioeng Biotechnol. 2021-1-4
Nanomaterials (Basel). 2020-5-12
Nat Chem. 2019-3
Appl Bionics Biomech. 2018-6-6
Bioresour Technol. 2017-11-11
Nat Rev Microbiol. 2016-3-30
Nanoscale. 2016-4-7