Sica A L, Steele A M, Gandhi M R, Prasad N
Department of Pediatrics, Schneider Children's Hospital, Long Island Jewish Medical Center, New Hyde Park, New York 11042.
J Dev Physiol. 1988 Aug;10(4):285-95.
In newborn pigs (4-6 days old), recordings of efferent whole hypoglossal and phrenic nerve discharges were obtained during hyperoxia (or normoxia) and during hypoxia, before and after bilateral vagotomy. With intact vagi, spontaneous hypoglossal inspiratory activity was not observed and was not elicited by either spontaneous changes of electroencephalogram (EEG) or hypoxic stimulation (15% O2 in N2). After bilateral vagotomy, some animals had episodes of spontaneous hypoglossal inspiratory activity; power spectral analysis of EEG demonstrated that this inspiratory activity appeared synchronously with shifts of major peaks in EEG spectra from the delta band (0.5-3.5 Hz) to the theta band (3.5-7.0 Hz). Hypoglossal inspiratory discharges were also elicited by hypoxic stimulation and usually had a decrementing discharge pattern; in some cases, this activity had an augmenting discharge pattern. Our results suggest that hypoglossal motoneurons are poorly modulated by central inspiratory drive, requiring additional facilitatory influences, i.e. corticobulbar, intra-bulbar, chemical drive, before such modulation is observed.