Suppr超能文献

嗜热栖热菌纲真核生物起源假说

Thermotogales origin scenario of eukaryogenesis.

作者信息

Kuwabara Tomohiko, Igarashi Kensuke

机构信息

Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305‒8572, Ibaraki, Japan.

Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062‒8517, Hokkaido, Japan.

出版信息

J Theor Biol. 2020 May 7;492:110192. doi: 10.1016/j.jtbi.2020.110192. Epub 2020 Feb 7.

Abstract

How eukaryotes were generated is an enigma of evolutionary biology. Widely accepted archaeal-origin eukaryogenesis scenarios, based on similarities of genes and related characteristics between archaea and eukaryotes, cannot explain several eukaryote-specific features of the last eukaryotic common ancestor, such as glycerol-3-phosphate-type membrane lipids, large cells and genomes, and endomembrane formation. Thermotogales spheroids, having multicopy-integrated large nucleoids and producing progeny in periplasm, may explain all of these features as well as endoplasmic reticulum-type signal cleavage sites, although they cannot divide. We hypothesize that the progeny chromosome is formed by random joining small DNAs in immature progeny, followed by reorganization by mechanisms including homologous recombination enabled with multicopy-integrated large genome (MILG). We propose that Thermotogales ancestor spheroids came to divide owing to the archaeal cell division genes horizontally transferred via virus-related particles, forming the first eukaryotic common ancestor (FECA). Referring to the hypothesis, the archaeal information-processing system would have been established in FECA by random joining DNAs excised from the MILG, which contained horizontally transferred archaeal and bacterial DNAs, followed by reorganization by the MILG-enabled homologous recombination. Thus, the large genome may have been a prerequisite, but not a consequence, of eukaryogenesis. The random joining of DNAs likely provided the basic mechanisms for eukaryotic evolution: producing the diversity by the formations of supergroups, novel genes, and introns that are involved in exon shuffling.

摘要

真核生物是如何产生的,这是进化生物学中的一个谜。基于古菌和真核生物之间基因及相关特征的相似性而被广泛接受的古菌起源真核生物发生假说,无法解释最后一个真核生物共同祖先的几个真核生物特有的特征,比如3-磷酸甘油型膜脂、大细胞和大基因组以及内膜形成。嗜热栖热菌球体具有多拷贝整合的大拟核并在周质中产生后代,尽管它们不能分裂,但可能解释所有这些特征以及内质网型信号切割位点。我们推测后代染色体是由未成熟后代中的小DNA随机连接形成的,随后通过包括多拷贝整合大基因组(MILG)实现的同源重组等机制进行重组。我们提出,嗜热栖热菌祖先球体由于通过病毒相关颗粒水平转移的古菌细胞分裂基因而开始分裂,形成了第一个真核生物共同祖先(FECA)。参照这一假说,古菌信息处理系统可能在FECA中通过随机连接从MILG中切除的DNA而建立,这些DNA包含水平转移的古菌和细菌DNA,随后通过MILG实现的同源重组进行重组。因此,大基因组可能是真核生物发生的一个先决条件,而非结果。DNA的随机连接可能为真核生物进化提供了基本机制:通过超群、新基因和参与外显子洗牌的内含子的形成产生多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验