Suppr超能文献

整合非 NMR 距离约束以增强蛋白质结构和动力学的 NMR 描绘。

Integrating Non-NMR Distance Restraints to Augment NMR Depiction of Protein Structure and Dynamics.

机构信息

CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430071, China.

CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430071, China.

出版信息

J Mol Biol. 2020 Apr 17;432(9):2913-2929. doi: 10.1016/j.jmb.2020.01.023. Epub 2020 Feb 7.

Abstract

Nuclear magnetic resonance (NMR) structure refinement is inherently integrative. The refinement incorporates a multitude of experimental data and minimizes the difference between observed and calculated values. Here, we review how the integrative use of non-NMR measurements, in particular, distance restraints from Förster resonance energy transfer and cross-linking coupled with mass spectrometry, can augment NMR depiction of protein structure and dynamics. Refinement against both NMR and non-NMR distance restraints helps to characterize the structures of high-molecular-weight proteins and protein complexes. When a protein fluctuates among multiple conformations at millisecond or a faster timescale, NMR signals from the different conformational states may coalesce into a single set of peaks. The integration of non-NMR distance restraints facilitates the deconvolution of NMR observables to state-specific restraints. Furthermore, the integrative use of fluorescence measurements, which provides an assessment of both length scale and timescale of protein dynamics simplifies protein ensemble structure refinement otherwise with NMR restraints alone and affords a more wholesome picture of protein dynamics. Together, distance measurements are intuitive and easy to implement by using an appropriate pseudoenergy function. Future development shall involve more accurate modeling of paramagnetic and fluorescent probes, incorporation of sparse restraints from new techniques, and characterization of protein structures in a complex cellular environment.

摘要

核磁共振(NMR)结构精修是一种综合性的方法。这种精修方法综合了大量的实验数据,并将观测值和计算值之间的差异最小化。在这里,我们回顾了如何综合使用非 NMR 测量方法,特别是 Förster 共振能量转移和交联与质谱相结合的距离约束,来增强蛋白质结构和动力学的 NMR 描述。针对 NMR 和非 NMR 距离约束的精修有助于表征高分子量蛋白质和蛋白质复合物的结构。当蛋白质在毫秒或更快的时间尺度上在多个构象之间波动时,来自不同构象状态的 NMR 信号可能会合并成一组单一的峰。非 NMR 距离约束的综合使用有助于将 NMR 可观测值分解为特定状态的约束。此外,荧光测量的综合使用提供了对蛋白质动力学的长度尺度和时间尺度的评估,这简化了仅使用 NMR 约束的蛋白质整体结构精修,并提供了更全面的蛋白质动力学图像。总之,距离测量直观且易于通过使用适当的伪能函数来实现。未来的发展将涉及更准确地模拟顺磁和荧光探针,结合新技术的稀疏约束,并在复杂的细胞环境中对蛋白质结构进行表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验