Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois61801, United States.
Department of Computer Science, Rice University, Houston, Texas77005, United States.
Biochemistry. 2023 Feb 21;62(4):956-967. doi: 10.1021/acs.biochem.2c00700. Epub 2023 Feb 3.
The RiPP precursor recognition element (RRE) is a conserved domain found in many prokaryotic ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic gene clusters (BGCs). RREs bind with high specificity and affinity to a recognition sequence within the N-terminal leader region of RiPP precursor peptides. Lasso peptide biosynthesis involves an RRE-dependent leader peptidase, which is discretely encoded or fused to the RRE as a di-domain protein. Here we leveraged thousands of predicted BGCs to define the RRE:leader peptidase interaction through evolutionary covariance analysis. Each interacting domain contributes a three-stranded β-sheet to form a hydrophobic β-sandwich-like interface. The bioinformatics-guided predictions were experimentally confirmed using proteins from discrete and fused lasso peptide BGC architectures. Support for the domain-domain interface derived from chemical shift perturbation, paramagnetic relaxation enhancement experiments, and rapid variant activity screening using cell-free biosynthesis. Further validation of selected variants was performed with purified proteins. We developed a nitroanilide-based leader peptidase assay to illuminate the role of RRE domains. Our data show that RRE domains play a dual function. RRE domains deliver the precursor peptide to the leader peptidase, and the rate is saturable as expected for a substrate. RRE domains also partially compose the elusive S2 proteolytic pocket that binds the penultimate threonine of lasso leader peptides. Because the RRE domain is required to form the active site, leader peptidase activity is greatly diminished when the RRE domain is supplied at substoichiometric levels. Full proteolytic activation requires RRE engagement with the recognition sequence-containing portion of the leader peptide. Together, our observations define a new mechanism for protease activity regulation.
RiPP 前体识别元件 (RRE) 是一个在许多原核核糖体合成和翻译后修饰肽 (RiPP) 生物合成基因簇 (BGC) 中发现的保守结构域。RRE 与 RiPP 前体肽的 N 端前导区中的识别序列具有高度特异性和亲和力。套索肽生物合成涉及依赖 RRE 的前导肽酶,该酶离散编码或融合到 RRE 作为双结构域蛋白。在这里,我们利用数千个预测的 BGC 通过进化协方差分析来定义 RRE:前导肽酶相互作用。每个相互作用的结构域贡献一个三股 β-折叠以形成疏水性 β-三明治样界面。基于生物信息学的预测通过来自离散和融合套索肽 BGC 结构的蛋白质进行了实验验证。使用化学位移扰动、顺磁松弛增强实验和使用无细胞生物合成的快速变体活性筛选来支持来自域-域界面的预测。使用纯化蛋白对选定变体进行了进一步验证。我们开发了一种基于硝基苯胺的前导肽酶测定法来阐明 RRE 结构域的作用。我们的数据表明 RRE 结构域具有双重功能。RRE 结构域将前体肽递送到前导肽酶,并且由于预期是底物,因此该速率是饱和的。RRE 结构域还部分组成难以捉摸的 S2 蛋白水解口袋,该口袋结合套索前导肽的倒数第三个苏氨酸。由于 RRE 结构域是形成活性位点所必需的,因此当以亚化学计量水平提供 RRE 结构域时,前导肽酶活性大大降低。完全蛋白水解激活需要 RRE 与前导肽中包含识别序列的部分结合。总的来说,我们的观察结果定义了一种新的蛋白酶活性调节机制。