Yu Zhenyang, Zeng Jian, Wang Jun, Cui Yaxiong, Song Xiaopeng, Zhang Yizhe, Cheng Xuan, Hou Ning, Teng Yan, Lan Yu, Chen Yeguang, Yang Xiao
State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Cardiovasc Res. 2021 Jan 21;117(2):533-546. doi: 10.1093/cvr/cvaa016.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs), a key component of the endosomal sorting complex required for transport (ESCRT), has been implicated in many essential biological processes. However, the physiological role of endogenous Hgs in the vascular system has not previously been explored. Here, we have generated brain endothelial cell (EC) specific Hgs knockout mice to uncover the function of Hgs in EC polarity and cerebrovascular stability.
Knockout of Hgs in brain ECs led to impaired endothelial apicobasal polarity and brain vessel collapse in mice. We determined that Hgs is essential for recycling of vascular endothelial (VE)-cadherin to the plasma membrane, since loss of Hgs blocked trafficking of endocytosed VE-cadherin from early endosomes to recycling endosomes, and impaired the motility of recycling endosomes. Supportively, overexpression of the motor kinesin family member 13A (KIF13A) restored endosomal recycling and rescued abrogated polarized trafficking and distribution of VE-cadherin in Hgs knockdown ECs.
These data uncover a novel physiological function of Hgs and support an essential role for the ESCRT machinery in the maintenance of EC polarity and cerebrovascular stability.
肝细胞生长因子调节的酪氨酸激酶底物(Hgs)是转运所需内体分选复合体(ESCRT)的关键组成部分,已被证明参与许多重要的生物学过程。然而,内源性Hgs在血管系统中的生理作用此前尚未被探索。在此,我们构建了脑内皮细胞(EC)特异性Hgs基因敲除小鼠,以揭示Hgs在EC极性和脑血管稳定性中的功能。
脑EC中Hgs基因敲除导致小鼠内皮细胞顶-基极性受损和脑血管塌陷。我们确定Hgs对于血管内皮(VE)-钙黏蛋白循环至质膜至关重要,因为Hgs的缺失阻断了内吞的VE-钙黏蛋白从早期内体到再循环内体的运输,并损害了再循环内体的运动性。作为支持,运动驱动蛋白家族成员13A(KIF13A)的过表达恢复了内体循环,并挽救了Hgs敲低的EC中VE-钙黏蛋白极化运输和分布的缺失。
这些数据揭示了Hgs的一种新的生理功能,并支持ESCRT机制在维持EC极性和脑血管稳定性中的重要作用。