García Gregorio, Sánchez-Palencia Pablo, Palacios Pablo, Wahnón Perla
Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, s/n, 28040 Madrid, Spain.
Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, s/n, 28040 Madrid, Spain.
Nanomaterials (Basel). 2020 Feb 7;10(2):283. doi: 10.3390/nano10020283.
This work explores the possibility of increasing the photovoltaic efficiency of InP semiconductors through a hyperdoping process with transition metals (TM = Ti, V, Cr, Mn). To this end, we investigated the crystal structure, electronic band and optical absorption features of TM-hyperdoped InP (TM@InP), with the formula TMxIn1-xP (x = 0.03), by using accurate ab initio electronic structure calculations. The analysis of the electronic structure shows that TM 3d-orbitals induce new states in the host semiconductor bandgap, leading to improved absorption features that cover the whole range of the sunlight spectrum. The best results are obtained for Cr@InP, which is an excellent candidate as an in-gap band (IGB) absorber material. As a result, the sunlight absorption of the material is considerably improved through new sub-bandgap transitions across the IGB. Our results provide a systematic and overall perspective about the effects of transition metal hyperdoping into the exploitation of new semiconductors as potential key materials for photovoltaic applications.
这项工作探索了通过过渡金属(TM = Ti、V、Cr、Mn)超掺杂工艺提高InP半导体光伏效率的可能性。为此,我们使用精确的从头算电子结构计算方法,研究了化学式为TMxIn1-xP(x = 0.03)的过渡金属超掺杂InP(TM@InP)的晶体结构、电子能带和光吸收特性。电子结构分析表明,TM的3d轨道在主体半导体带隙中诱导出新的态,从而改善了吸收特性,使其覆盖了太阳光光谱的整个范围。对于Cr@InP获得了最佳结果,它是一种作为带隙内能带(IGB)吸收材料的优秀候选材料。结果,通过跨越IGB的新的亚带隙跃迁,该材料的太阳光吸收得到了显著改善。我们的结果为过渡金属超掺杂对开发新型半导体作为光伏应用潜在关键材料的影响提供了系统而全面的视角。