Suppr超能文献

利用高光谱显微镜成像技术结合卷积神经网络对食源性病原体进行分类。

Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks.

机构信息

College of Engineering, Nanjing Agricultural University, Nanjing, 210031, Jiangsu, China.

United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, 30605, USA.

出版信息

Appl Microbiol Biotechnol. 2020 Apr;104(7):3157-3166. doi: 10.1007/s00253-020-10387-4. Epub 2020 Feb 12.

Abstract

Foodborne pathogens have become ongoing threats in the food industry, whereas their rapid detection and classification at an early stage are still challenging. To address early and rapid detection, hyperspectral microscope imaging (HMI) technology combined with convolutional neural networks (CNN) was proposed to classify foodborne bacterial species at the cellular level. HMI technology can simultaneously obtain both spatial and spectral information of different live bacterial cells, while two CNN frameworks, U-Net and one-dimensional CNN (1D-CNN), were employed to accelerate the data analysis process. U-Net was used for automating cellular regions of interest (ROI) segmentation, which generated accurate cell-ROI masks in a shorter timeframe than the conventional Otsu or Watershed methods. The 1D-CNN was employed for classifying the spectral profiles extracted from cell-ROI and resulted in a higher accuracy (90%) than k-nearest neighbor (81%) and support vector machine (81%). Overall, the CNN-assisted HMI technology showed potential for foodborne bacteria detection.

摘要

食源性致病菌已成为食品工业中持续存在的威胁,而早期快速检测和分类仍然具有挑战性。为了解决早期和快速检测的问题,提出了将高光谱显微镜成像(HMI)技术与卷积神经网络(CNN)相结合,在细胞水平上对食源性细菌进行分类。HMI 技术可以同时获得不同活细菌细胞的空间和光谱信息,而 U-Net 和一维卷积神经网络(1D-CNN)这两个 CNN 框架则被用于加速数据分析过程。U-Net 用于自动分割细胞感兴趣区域(ROI),与传统的 Otsu 或分水岭方法相比,它可以在更短的时间内生成更准确的细胞-ROI 掩模。1D-CNN 用于对从细胞-ROI 中提取的光谱曲线进行分类,其准确性(90%)高于 k-最近邻(81%)和支持向量机(81%)。总的来说,CNN 辅助的 HMI 技术在食源性细菌检测方面具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验