Suppr超能文献

人工神经网络在微生物图像分析中的应用:从传统多层感知器到流行卷积神经网络及潜在视觉变换器的全面综述

Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer.

作者信息

Zhang Jinghua, Li Chen, Yin Yimin, Zhang Jiawei, Grzegorzek Marcin

机构信息

Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.

Institute for Medical Informatics, University of Luebeck, Luebeck, Germany.

出版信息

Artif Intell Rev. 2023;56(2):1013-1070. doi: 10.1007/s10462-022-10192-7. Epub 2022 May 4.

Abstract

Microorganisms are widely distributed in the human daily living environment. They play an essential role in environmental pollution control, disease prevention and treatment, and food and drug production. The analysis of microorganisms is essential for making full use of different microorganisms. The conventional analysis methods are laborious and time-consuming. Therefore, the automatic image analysis based on artificial neural networks is introduced to optimize it. However, the automatic microorganism image analysis faces many challenges, such as the requirement of a robust algorithm caused by various application occasions, insignificant features and easy under-segmentation caused by the image characteristic, and various analysis tasks. Therefore, we conduct this review to comprehensively discuss the characteristics of microorganism image analysis based on artificial neural networks. In this review, the background and motivation are introduced first. Then, the development of artificial neural networks and representative networks are presented. After that, the papers related to microorganism image analysis based on classical and deep neural networks are reviewed from the perspectives of different tasks. In the end, the methodology analysis and potential direction are discussed.

摘要

微生物广泛分布于人类日常生活环境中。它们在环境污染控制、疾病防治以及食品和药品生产中发挥着至关重要的作用。对微生物进行分析对于充分利用不同的微生物至关重要。传统的分析方法既费力又耗时。因此,引入基于人工神经网络的自动图像分析来对其进行优化。然而,自动微生物图像分析面临诸多挑战,例如因各种应用场景导致对稳健算法的需求、图像特征导致的特征不显著以及易出现分割不足的情况,还有各种分析任务。因此,我们开展此综述以全面探讨基于人工神经网络的微生物图像分析的特点。在本综述中,首先介绍背景和动机。然后,阐述人工神经网络的发展及代表性网络。之后,从不同任务的角度对基于经典神经网络和深度神经网络的微生物图像分析相关论文进行综述。最后,讨论方法分析和潜在方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e47/9066147/7e36779d5f0f/10462_2022_10192_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验