Wei Pai-Chun, Liao Chien-Neng, Wu Hsin-Jay, Yang Dongwang, He Jian, Biesold-McGee Gill V, Liang Shuang, Yen Wan-Ting, Tang Xinfeng, Yeh Jien-Wei, Lin Zhiqun, He Jr-Hau
Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
High Entropy Materials Center, Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC.
Adv Mater. 2020 Mar;32(12):e1906457. doi: 10.1002/adma.201906457. Epub 2020 Feb 12.
Thermoelectric (TE) research is not only a course of materials by discovery but also a seedbed of novel concepts and methodologies. Herein, the focus is on recent advances in three emerging paradigms: entropy engineering, phase-boundary mapping, and liquid-like TE materials in the context of thermodynamic routes. Specifically, entropy engineering is underpinned by the core effects of high-entropy alloys; the extended solubility limit, the tendency to form a high-symmetry crystal structure, severe lattice distortions, and sluggish diffusion processes afford large phase space for performance optimization, high electronic-band degeneracy, rich multiscale microstructures, and low lattice thermal conductivity toward higher-performance TE materials. Entropy engineering is successfully implemented in half-Huesler and IV-VI compounds. In Zintl phases and skutterudites, the efficacy of phase-boundary mapping is demonstrated through unraveling the profound relations among chemical compositions, mutual solubilities of constituent elements, phase instability, microstructures, and resulting TE properties at the operation temperatures. Attention is also given to liquid-like TE materials that exhibit lattice thermal conductivity at lower than the amorphous limit due to intensive mobile ion disorder and reduced vibrational entropy. To conclude, an outlook on the development of next-generation TE materials in line with these thermodynamic routes is given.
热电(TE)研究不仅是一个通过发现新材料的过程,也是新观念和新方法的摇篮。在此,重点关注三种新兴范式的最新进展:熵工程、相界映射以及在热力学路径背景下的类液态TE材料。具体而言,熵工程以高熵合金的核心效应为基础;扩展的溶解度极限、形成高对称晶体结构的趋势、严重的晶格畸变以及缓慢的扩散过程为性能优化提供了较大的相空间,高电子能带简并性、丰富的多尺度微观结构以及较低的晶格热导率有助于实现高性能TE材料。熵工程已在半赫斯勒化合物和IV-VI化合物中成功实施。在津特耳相和方钴矿中,通过揭示化学成分、组成元素的互溶性、相不稳定性、微观结构以及在工作温度下产生的TE性能之间的深刻关系,证明了相界映射的有效性。还关注了类液态TE材料,由于强烈的移动离子无序和降低的振动熵,它们表现出低于非晶极限的晶格热导率。最后,展望了符合这些热力学路径的下一代TE材料的发展。