Suppr超能文献

简便原位制备生物形态CoP-CoO/rGO/C作为氧还原反应的高效电催化剂

Facile in situ fabrication of biomorphic CoP-CoO/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction.

作者信息

Guo Xingmei, Qian Cheng, Wan Xiaohan, Zhang Wei, Zhu Haowei, Zhang Junhao, Yang Hongxun, Lin Shengling, Kong Qinghong, Fan Tongxiang

机构信息

School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China.

School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

出版信息

Nanoscale. 2020 Feb 20;12(7):4374-4382. doi: 10.1039/c9nr10785a.

Abstract

Streptococcus thermophilus, a Gram-positive (G+) bacterium featuring a teichoic acid-rich cell wall, has been employed as both a phosphorus source and template to synthesize a biomorphic Co2P-Co3O4/rGO/C composite as an efficient electrocatalyst for the oxygen reduction reaction (ORR). Different from the conventional method for the synthesis of phosphides, bio-derivative phosphorus vapor was emitted from the inside out, which facilitated the in situ transformation of the chemically adsorbed Co precursor on the bacteria into Co2P-Co3O4 heterogeneous nanoparticles, which featured a Co2P-rich body and Co3O4-rich surface. Besides, reduced graphene oxide (rGO) was also introduced in the synthetic process to keep Co2P-Co3O4 scattered and further promote the electron transport efficiency. All the Co2P-Co3O4 nanoparticles and rGO sheets were supported on the bacteria-derived carbon substrate with submicron-spherical morphology. The as-obtained Co2P-Co3O4/rGO/C composite exhibited excellent electrocatalytic performance for ORR with onset and half-wave potentials of 0.91 and 0.80 V vs. RHE, respectively. Furthermore, its long-term stability and methanol tolerance were better than those of commercial Pt/C. Thus, this work presents a new strategy of using an interior bio-phosphorus source to obtain heterojunction particles featuring a phosphide-rich body and oxide-rich surface, which may provide some insights for the construction of efficient heterogeneous electrocatalysts.

摘要

嗜热链球菌是一种革兰氏阳性(G+)细菌,其细胞壁富含磷壁酸,已被用作磷源和模板来合成生物形态的Co2P-Co3O4/rGO/C复合材料,作为氧还原反应(ORR)的高效电催化剂。与传统的磷化物合成方法不同,生物衍生的磷蒸气从内向外释放,这促进了细菌上化学吸附的Co前驱体原位转化为Co2P-Co3O4异质纳米颗粒,其特点是主体富含Co2P,表面富含Co3O4。此外,在合成过程中还引入了还原氧化石墨烯(rGO),以保持Co2P-Co3O4的分散性,并进一步提高电子传输效率。所有的Co2P-Co3O4纳米颗粒和rGO片都负载在具有亚微米球形形态的细菌衍生碳基底上。所制备的Co2P-Co3O4/rGO/C复合材料对ORR表现出优异的电催化性能,相对于可逆氢电极(RHE)的起始电位和半波电位分别为0.91和0.80 V。此外,其长期稳定性和甲醇耐受性优于商业Pt/C。因此,这项工作提出了一种利用内部生物磷源获得主体富含磷化物、表面富含氧化物的异质结颗粒的新策略,这可能为构建高效的异质电催化剂提供一些见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验