Mukazhanova Aliya, Trerayapiwat Kasidet Jing, Mazaheripour Amir, Wardrip Austin G, Frey Nathan C, Nguyen Hung, Gorodetsky Alon A, Sharifzadeh Sahar
Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States.
Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.
J Phys Chem A. 2020 Apr 23;124(16):3055-3063. doi: 10.1021/acs.jpca.9b08117. Epub 2020 Apr 9.
π-stacked organic electronic materials are tunable light absorbers with many potential applications in optoelectronics. The optical properties of such molecules are highly dependent on the nature and energy of electron-hole pairs or excitons formed upon light absorption, which in turn are determined by intra- and intermolecular electronic and vibrational excitations. Here, we present a first-principles approach for describing the optical spectrum of stacked organic molecules with strong vibronic coupling. For stacked perylene tetracarboxylic acid diimides, we describe optical excitations by using the time-dependent density functional theory with a Franck-Condon Herzberg-Teller approximation of vibronic effects and validate our approach with comparison to experimental ultraviolet-visible (UV-vis) absorption measurements of solvated model systems. We determine that for larger macromolecules, unlike for single molecules, the sampling of the ground-state potential energy surface significantly influences the optical absorption spectrum. We account for this effect by applying our analysis to ∼100 structures extracted from equilibrated molecular dynamics simulations and averaging the optical spectrum over the entire ensemble. Additionally, we demonstrate that intermolecular electronic coupling within the stacks results in multiple low-energy electronically excited states that all contribute to the optical spectrum. This study provides a computationally feasible recipe for describing the spectroscopic properties of stacked organic chromophores via first-principles density functional theory.
π堆积有机电子材料是可调谐光吸收剂,在光电子学中有许多潜在应用。这类分子的光学性质高度依赖于光吸收时形成的电子-空穴对或激子的性质和能量,而这又由分子内和分子间的电子及振动激发所决定。在此,我们提出一种第一性原理方法来描述具有强振动电子耦合的堆积有机分子的光谱。对于堆积的苝四羧酸二亚胺,我们通过使用含振动电子效应的弗兰克-康登-赫兹伯格-特勒近似的含时密度泛函理论来描述光激发,并通过与溶剂化模型体系的实验紫外-可见(UV-vis)吸收测量结果进行比较来验证我们的方法。我们确定,对于较大的大分子,与单分子不同,基态势能面的采样对光吸收光谱有显著影响。我们通过将分析应用于从平衡分子动力学模拟中提取的约100个结构,并对整个系综的光谱进行平均来考虑这种效应。此外,我们证明了堆积内的分子间电子耦合导致多个低能电子激发态,这些激发态都对光谱有贡献。这项研究提供了一种通过第一性原理密度泛函理论描述堆积有机发色团光谱性质的计算可行方法。