Suppr超能文献

DyPc分子中Dy同位素的超精细相互作用和四极相互作用。

Hyperfine and quadrupole interactions for Dy isotopes in DyPc molecules.

作者信息

Wysocki Aleksander L, Park Kyungwha

机构信息

Department of Physics, Virginia Tech, Blacksburg, VA 24061, United States of America.

出版信息

J Phys Condens Matter. 2020 Jun 24;32(27):274002. doi: 10.1088/1361-648X/ab757b.

Abstract

Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets. We investigate the hyperfine and nuclear quadrupole interactions for Dy and Dy nuclei in anionic DyPc (Pc  =  phthalocyanine) single-molecule magnets, using multiconfigurational ab initio methods (beyond density-functional theory) including spin-orbit interaction. The two isotopes of Dy are chosen because the others have zero nuclear spin. Both isotopes have the nuclear spin I  =  5/2, although the magnitude and sign of the nuclear magnetic moment differ from each other. The large energy gap between the electronic ground and first-excited Kramers doublets, allows us to map the microscopic hyperfine and quadrupole interaction Hamiltonian onto an effective Hamiltonian with an electronic pseudo-spin [Formula: see text] that corresponds to the ground Kramers doublet. Our ab initio calculations show that the coupling between the nuclear spin and electronic orbital angular momentum contributes the most to the hyperfine interaction and that both the hyperfine and nuclear quadrupole interactions for Dy and Dy nuclei are much smaller than those for the Tb nucleus in TbPc single-molecule magnets. The calculated separations of the electronic-nuclear levels are comparable to experimental data reported for DyPc. We demonstrate that hyperfine interaction for the Dy Kramers ion leads to tunnel splitting (or quantum tunneling of magnetization) at zero field. This effect does not occur for TbPc single-molecule magnets. The magnetic field values of the avoided level crossings for DyPc and DyPc are found to be noticeably different, which can be observed from the experiment.

摘要

核自旋能级在理解基于镧系元素的单分子磁体中的磁化动力学以及量子比特的实现和控制方面起着重要作用。我们使用包括自旋轨道相互作用的多组态从头算方法(超越密度泛函理论),研究了阴离子型DyPc(Pc = 酞菁)单分子磁体中Dy和Dy核的超精细相互作用和核四极相互作用。选择Dy的这两种同位素是因为其他同位素的核自旋为零。两种同位素的核自旋I = 5/2,尽管核磁矩的大小和符号彼此不同。电子基态和第一激发克莱默斯双重态之间的大能量间隙,使我们能够将微观超精细和四极相互作用哈密顿量映射到一个有效的哈密顿量上,该哈密顿量具有与基态克莱默斯双重态相对应的电子伪自旋[公式:见正文]。我们的从头算计算表明,核自旋与电子轨道角动量之间的耦合对超精细相互作用的贡献最大,并且Dy和Dy核的超精细相互作用和核四极相互作用都比TbPc单分子磁体中Tb核的相应相互作用小得多。计算得到的电子 - 核能级间距与报道的DyPc实验数据相当。我们证明,Dy克莱默斯离子的超精细相互作用在零场下导致隧道分裂(或磁化的量子隧穿)。这种效应在TbPc单分子磁体中不会发生。发现DyPc和DyPc避免能级交叉的磁场值明显不同,这可以从实验中观察到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验