Ette Pedda Masthanaiah, Chithambararaj A, Prakash A S, Ramesha K
CSIR-Central Electrochemical Research Institute-Chennai Unit, CSIR-Madras Complex, Taramani, Chennai 600 113, India.
Academy of Scientific and Innovative Research (AcSIR), CSIR-CECRI, Karaikudi 600 003, India.
ACS Appl Mater Interfaces. 2020 Mar 11;12(10):11511-11521. doi: 10.1021/acsami.9b20751. Epub 2020 Feb 26.
In recent years, conversion-based mixed transition-metal oxides have emerged as a potential anode for the next generation lithium-ion batteries because of their high theoretical capacity and high rate performance. Herein, an interconnected cobalt molybdenum oxide (CoMoO) nanoarchitecture derived from molybdenum sulfide (MoS) nanoflowers is investigated as an anode for lithium-ion batteries. The interconnected CoMoO displayed an excellent discharge capacity of 1100 mA h g over 100 cycles at a current rate of C/5. Moreover, the material exhibited an enhanced electrochemical stability, high rate performance, and delivered high discharge capacities of 600 and 220 mA h g, respectively, at 5 C and 10 C after 500 cycles. The excellent cycling stability and high rate performance of interconnected CoMoO are credited to its unique architecture and porous morphology. The above characteristics and the synergetic effect between the constituting metal ions not only provided a shorter diffusion path for the lithium-ion conduction but also improved the electronic conductivity and mechanical strength of the anode. The field-emission scanning electron microscopy analysis of the electrochemically cycled electrode revealed good structural integrity of the electrode. Further, the practical feasibility of interconnected CoMoO in the full cell was analyzed by integrating it with the LiNiMnCoO cathode, which demonstrated excellent cycling stability and high rate performance.
近年来,基于转换的混合过渡金属氧化物因其高理论容量和高倍率性能,已成为下一代锂离子电池潜在的负极材料。在此,我们研究了一种由硫化钼(MoS)纳米花衍生而来的相互连接的氧化钴钼(CoMoO)纳米结构作为锂离子电池的负极。在C/5的电流倍率下,相互连接的CoMoO在100次循环中表现出1100 mA h g的优异放电容量。此外,该材料表现出增强的电化学稳定性、高倍率性能,在500次循环后,在5 C和10 C的电流倍率下分别具有600和220 mA h g的高放电容量。相互连接的CoMoO优异的循环稳定性和高倍率性能归功于其独特的结构和多孔形态。上述特性以及构成金属离子之间的协同效应不仅为锂离子传导提供了更短的扩散路径,还提高了负极的电子导电性和机械强度。对经过电化学循环的电极进行场发射扫描电子显微镜分析,结果表明电极具有良好的结构完整性。此外,通过将相互连接的CoMoO与LiNiMnCoO正极集成,分析了其在全电池中的实际可行性,结果表明其具有优异的循环稳定性和高倍率性能。