Di Iorio John R, Li Sichi, Jones Casey B, Nimlos Claire T, Wang Yujia, Kunkes Eduard, Vattipalli Vivek, Prasad Subramanian, Moini Ahmad, Schneider William F, Gounder Rajamani
Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States.
J Am Chem Soc. 2020 Mar 11;142(10):4807-4819. doi: 10.1021/jacs.9b13817. Epub 2020 Feb 28.
We combine experiment and theory to investigate the cooperation or competition between organic and inorganic structure-directing agents (SDAs) for occupancy within microporous voids of chabazite (CHA) zeolites and to rationalize the effects of SDA siting on biasing the framework Al arrangement (Al-O(-Si-O)-Al, = 1-3) among CHA zeolites of essentially fixed composition (Si/Al = 15). CHA zeolites crystallized using mixtures of TMAda and Na contain one TMAda occluded per cage and Na co-occluded in an amount linearly proportional to the number of 6-MR paired Al sites, quantified by Co titration. In contrast, CHA zeolites crystallized using mixtures of TMAda and K provide evidence that three K cations, on average, displace one TMAda from occupying a cage and contain predominantly 6-MR isolated Al sites. Moreover, CHA crystallizes from synthesis media containing more than 10-fold higher inorganic-to-organic ratios with K than with Na before competing crystalline phases form, providing a route to decrease the amount of organic SDA needed to crystallize high-silica CHA. Density functional theory calculations show that differences in the ionic radii of Na and K determine their preferences for siting in different CHA rings, which influences their energy to co-occlude with TMAda and stabilize different Al configurations. Monte Carlo models confirm that energy differences resulting from Na or K co-occlusion promote the formation of 6-MR and 8-MR paired Al arrangements, respectively. These results highlight opportunities to exploit using mixtures of organic and inorganic SDAs during zeolite crystallization in order to more efficiently use organic SDAs and influence framework Al arrangements.
我们结合实验与理论,研究有机和无机结构导向剂(SDA)在菱沸石(CHA)沸石微孔空隙中占据时的协同作用或竞争关系,并阐释SDA的位置对具有基本固定组成(Si/Al = 15)的CHA沸石中骨架Al排列(Al-O(-Si-O)-Al, = 1 - 3)的偏向作用的影响。使用TMAda和Na的混合物结晶得到的CHA沸石,每个笼中包含一个被包合的TMAda,并且Na的共包合量与通过Co滴定定量的6-MR配对Al位点的数量呈线性比例关系。相比之下,使用TMAda和K的混合物结晶得到的CHA沸石表明,平均而言,三个K阳离子会取代一个占据笼的TMAda,并且主要包含6-MR孤立Al位点。此外,在竞争晶相形成之前,CHA从含有比Na高10倍以上无机与有机比例的K的合成介质中结晶,这为减少结晶高硅CHA所需的有机SDA量提供了一条途径。密度泛函理论计算表明,Na和K离子半径的差异决定了它们在不同CHA环中占位的偏好,这影响了它们与TMAda共包合并稳定不同Al构型的能量。蒙特卡罗模型证实,由Na或K共包合产生的能量差异分别促进了6-MR和8-MR配对Al排列的形成。这些结果突出了在沸石结晶过程中利用有机和无机SDA混合物的机会,以便更有效地使用有机SDA并影响骨架Al排列。