Carpenter Lucy J, Andrews Stephen J, Lidster Richard T, Saiz-Lopez Alfonso, Fernandez-Sanchez Miguel, Bloss William J, Ouyang Bin, Jones Roderic L
1Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York, YO10 5DD UK.
2Atmospheric Chemistry and Climate Group, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), 28006 Madrid, Spain.
J Atmos Chem. 2017;74(2):145-156. doi: 10.1007/s10874-015-9320-6. Epub 2015 Oct 5.
Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CHI) and chloro-iodomethane (CHICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CHI and CHICl in air and of CHI in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CHI was lower in amplitude than that of CHICl, despite its faster photolysis rate. We speculate that night-time loss of CHI occurs due to reaction with NO radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a of ≤4 × 10 cm molecule s; a previous kinetic study carried out at ≤100 Torr found of 4 × 10 cm molecule s. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/- 0.8 nmol m d for CHI and 3.7 +/- 0.8 nmol m d for CHICl), we show that the model overestimates night-time CHI by >60 % but reaches good agreement with the measurements when the CHI + NO reaction is included at 2-4 × 10 cm molecule s. We conclude that the reaction has a significant effect on CHI and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.
海洋中无机和有机碘化合物的排放驱动着碘的生物地球化学循环,并产生具有反应活性的破坏臭氧的碘自由基,这些自由基会影响大气的氧化能力。二碘甲烷(CH₂I₂)和氯碘甲烷(CH₂ICl)是海洋边界层中两种最重要的有机碘前体物质。2012年1月/2月在东热带太平洋进行的TORERO(热带海洋对流层活性卤素和氧化挥发性有机化合物交换)实地考察期间所进行的船载测量显示,空气中CH₂I₂和CH₂ICl以及海水中CH₂I₂呈现出强烈的昼夜循环。已知这两种化合物在白天都会经历快速光解,但模型假定其在夜间没有大气损失。令人惊讶的是,尽管CH₂I₂的光解速率更快,但其昼夜循环的幅度却低于CH₂ICl。我们推测,CH₂I₂在夜间的损失是由于与NO自由基发生反应所致。在环境大气边界层条件下进行的一项实验室研究的间接结果表明,反应速率常数≤4×10⁻¹¹cm³·molecule⁻¹·s⁻¹;之前在≤100托的条件下进行的动力学研究发现反应速率常数为4×10⁻¹¹cm³·molecule⁻¹·s⁻¹。利用由根据海水和空气测量值计算得出的海气通量驱动的一维大气THAMO模型(CH₂I₂的平均值为1.8±0.8 nmol·m⁻²·d⁻¹,CH₂ICl的平均值为3.7±0.8 nmol·m⁻²·d⁻¹),我们发现该模型对夜间CH₂I₂的估计高估了>60%,但当CH₂I₂ + NO反应的反应速率常数设定为2 - 4×10⁻¹¹cm³·molecule⁻¹·s⁻¹时,模型与测量结果达成了良好的一致性。我们得出结论,该反应对CH₂I₂有显著影响,并有助于使观测浓度与模型浓度相协调。我们建议在大气条件下对该反应进行进一步的直接测量,包括对产物分支比的测量。