Suppr超能文献

受推荐系统启发的上下文关联任务的神经回路模型。

A neural circuit model for a contextual association task inspired by recommender systems.

机构信息

Division of Systems Engineering, Boston University, Boston, Massachusetts.

Department of Electrical and Computer Engineering, Division of Systems Engineering, and Department of Biomedical Engineering, Boston University, Boston, Massachusetts.

出版信息

Hippocampus. 2020 Apr;30(4):384-395. doi: 10.1002/hipo.23194. Epub 2020 Feb 14.

Abstract

Behavioral data shows that humans and animals have the capacity to learn rules of associations applied to specific examples, and generalize these rules to a broad variety of contexts. This article focuses on neural circuit mechanisms to perform a context-dependent association task that requires linking sensory stimuli to behavioral responses and generalizing to multiple other symmetrical contexts. The model uses neural gating units that regulate the pattern of physiological connectivity within the circuit. These neural gating units can be used in a learning framework that performs low-rank matrix factorization analogous to recommender systems, allowing generalization with high accuracy to a wide range of additional symmetrical contexts. The neural gating units are trained with a biologically inspired framework involving traces of Hebbian modification that are updated based on the correct behavioral output of the network. This modeling demonstrates potential neural mechanisms for learning context-dependent association rules and for the change in selectivity of neurophysiological responses in the hippocampus. The proposed computational model is evaluated using simulations of the learning process and the application of the model to new stimuli. Further, human subject behavioral experiments were performed and the results validate the key observation of a low-rank synaptic matrix structure linking stimuli to responses.

摘要

行为数据表明,人类和动物有能力学习应用于特定示例的关联规则,并将这些规则推广到广泛的上下文。本文专注于神经回路机制,以执行需要将感官刺激与行为反应联系起来并推广到多个其他对称上下文的依赖上下文的关联任务。该模型使用神经门控单元来调节回路内生理连接的模式。这些神经门控单元可用于执行类似于推荐系统的低秩矩阵分解的学习框架,允许高精度地推广到广泛的其他对称上下文。神经门控单元使用涉及赫布修正痕迹的生物启发式框架进行训练,该痕迹根据网络的正确行为输出进行更新。该建模证明了用于学习上下文相关关联规则以及改变海马体中神经生理反应选择性的潜在神经机制。使用学习过程的模拟和模型在新刺激上的应用来评估所提出的计算模型。此外,进行了人类主题行为实验,结果验证了连接刺激与反应的低秩突触矩阵结构的关键观察结果。

相似文献

2
Neural circuits for learning context-dependent associations of stimuli.学习刺激上下文相关关联的神经回路。
Neural Netw. 2018 Nov;107:48-60. doi: 10.1016/j.neunet.2018.07.018. Epub 2018 Aug 13.
5
A network model of behavioural performance in a rule learning task.在规则学习任务中行为表现的网络模型。
Philos Trans R Soc Lond B Biol Sci. 2018 Apr 19;373(1744). doi: 10.1098/rstb.2017.0275.
6
Context-dependent selection of visuomotor maps.视觉运动图谱的情境依赖选择
BMC Neurosci. 2004 Nov 25;5:47. doi: 10.1186/1471-2202-5-47.
9
Perceptual learning is specific to the trained structure of information.知觉学习特定于所训练的信息结构。
J Cogn Neurosci. 2013 Dec;25(12):2047-60. doi: 10.1162/jocn_a_00453. Epub 2013 Aug 5.

引用本文的文献

1
Cognitive Control.认知控制
Annu Rev Psychol. 2025 Jan;76(1):167-195. doi: 10.1146/annurev-psych-022024-103901. Epub 2024 Dec 3.
2
Predicted utility modulates working memory fidelity in the brain.预测效用调节大脑工作记忆的保真度。
Cortex. 2023 Mar;160:115-133. doi: 10.1016/j.cortex.2022.09.018. Epub 2023 Feb 1.
3
Neural circuits and symbolic processing.神经回路和符号处理。
Neurobiol Learn Mem. 2021 Dec;186:107552. doi: 10.1016/j.nlm.2021.107552. Epub 2021 Nov 8.

本文引用的文献

1
Neural circuits for learning context-dependent associations of stimuli.学习刺激上下文相关关联的神经回路。
Neural Netw. 2018 Nov;107:48-60. doi: 10.1016/j.neunet.2018.07.018. Epub 2018 Aug 13.
2
Flexible resonance in prefrontal networks with strong feedback inhibition.具有强反馈抑制的前额叶网络中的柔性共振。
PLoS Comput Biol. 2018 Aug 9;14(8):e1006357. doi: 10.1371/journal.pcbi.1006357. eCollection 2018 Aug.
4
A network model of behavioural performance in a rule learning task.在规则学习任务中行为表现的网络模型。
Philos Trans R Soc Lond B Biol Sci. 2018 Apr 19;373(1744). doi: 10.1098/rstb.2017.0275.
6
Learning and transfer of working memory gating policies.工作记忆门控策略的学习和迁移。
Cognition. 2018 Mar;172:89-100. doi: 10.1016/j.cognition.2017.12.001. Epub 2017 Dec 12.
7
A neural model of rule generation in inductive reasoning.归纳推理中规则生成的神经模型。
Top Cogn Sci. 2011 Jan;3(1):140-53. doi: 10.1111/j.1756-8765.2010.01127.x.
10
A large-scale model of the functioning brain.一个大脑功能的大规模模型。
Science. 2012 Nov 30;338(6111):1202-5. doi: 10.1126/science.1225266.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验