Suppr超能文献

前额叶震荡调节工作记忆所需的神经元活动的传播。

Prefrontal oscillations modulate the propagation of neuronal activity required for working memory.

机构信息

Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Boston University, MA 02215, United States; The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States.

Department of Mathematics and Statistics, Boston University, Boston, MA 02215, United States; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, United States.

出版信息

Neurobiol Learn Mem. 2020 Sep;173:107228. doi: 10.1016/j.nlm.2020.107228. Epub 2020 Jun 17.

Abstract

Cognition involves using attended information, maintained in working memory (WM), to guide action. During a cognitive task, a correct response requires flexible, selective gating so that only the appropriate information flows from WM to downstream effectors that carry out the response. In this work, we used biophysically-detailed modeling to explore the hypothesis that network oscillations in prefrontal cortex (PFC), leveraging local inhibition, can independently gate responses to items in WM. The key role of local inhibition was to control the period between spike bursts in the outputs, and to produce an oscillatory response no matter whether the WM item was maintained in an asynchronous or oscillatory state. We found that the WM item that induced an oscillatory population response in the PFC output layer with the shortest period between spike bursts was most reliably propagated. The network resonant frequency (i.e., the input frequency that produces the largest response) of the output layer can be flexibly tuned by varying the excitability of deep layer principal cells. Our model suggests that experimentally-observed modulation of PFC beta-frequency (15-30 Hz) and gamma-frequency (30-80 Hz) oscillations could leverage network resonance and local inhibition to govern the flexible routing of signals in service to cognitive processes like gating outputs from working memory and the selection of rule-based actions. Importantly, we show for the first time that nonspecific changes in deep layer excitability can tune the output gate's resonant frequency, enabling the specific selection of signals encoded by populations in asynchronous or fast oscillatory states. More generally, this represents a dynamic mechanism by which adjusting network excitability can govern the propagation of asynchronous and oscillatory signals throughout neocortex.

摘要

认知涉及使用注意力信息,这些信息保存在工作记忆 (WM) 中,以指导行动。在认知任务中,正确的反应需要灵活、选择性的门控,以便只有适当的信息从 WM 流向下游效应器,从而执行反应。在这项工作中,我们使用了具有生物物理细节的建模来探索假设,即前额叶皮层 (PFC) 中的网络振荡,利用局部抑制,可以独立地对 WM 中的项目进行门控。局部抑制的关键作用是控制输出中尖峰爆发之间的周期,并产生振荡响应,无论 WM 项目是保持异步状态还是振荡状态。我们发现,在 PFC 输出层中,引起尖峰爆发之间最短周期的振荡群体反应的 WM 项目最可靠地传播。输出层的网络谐振频率(即产生最大响应的输入频率)可以通过改变深层主细胞的兴奋性来灵活调节。我们的模型表明,实验观察到的 PFC β频(15-30 Hz)和γ频(30-80 Hz)振荡的调制可以利用网络共振和局部抑制来控制信号的灵活路由,以服务于认知过程,例如从工作记忆中输出门控和选择基于规则的动作。重要的是,我们首次表明,深层兴奋性的非特异性变化可以调节输出门的谐振频率,从而能够对异步和快速振荡状态下的群体编码信号进行特异性选择。更一般地说,这代表了一种动态机制,通过调整网络兴奋性可以控制异步和振荡信号在整个新皮层中的传播。

相似文献

2
Gamma and Beta Bursts Underlie Working Memory.伽马暴和贝塔暴构成工作记忆的基础。
Neuron. 2016 Apr 6;90(1):152-164. doi: 10.1016/j.neuron.2016.02.028. Epub 2016 Mar 17.
4
Flexible resonance in prefrontal networks with strong feedback inhibition.具有强反馈抑制的前额叶网络中的柔性共振。
PLoS Comput Biol. 2018 Aug 9;14(8):e1006357. doi: 10.1371/journal.pcbi.1006357. eCollection 2018 Aug.
7
Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.双向额顶振荡系统支持工作记忆。
Curr Biol. 2017 Jun 19;27(12):1829-1835.e4. doi: 10.1016/j.cub.2017.05.046. Epub 2017 Jun 9.
9
Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex.灵长类前额叶皮层工作记忆的稳定与动态编码
J Neurosci. 2017 Jul 5;37(27):6503-6516. doi: 10.1523/JNEUROSCI.3364-16.2017. Epub 2017 May 30.

引用本文的文献

1
Interleaved single and bursting spiking resonance in neurons.神经元中的交错单峰和爆发式尖峰共振
PLoS Comput Biol. 2025 May 22;21(5):e1013126. doi: 10.1371/journal.pcbi.1013126. eCollection 2025 May.
10
Uncovering the organization of neural circuits with Generalized Phase Locking Analysis.运用广义相位锁定分析揭示神经回路的组织。
PLoS Comput Biol. 2023 Apr 3;19(4):e1010983. doi: 10.1371/journal.pcbi.1010983. eCollection 2023 Apr.

本文引用的文献

3
Neural circuits for learning context-dependent associations of stimuli.学习刺激上下文相关关联的神经回路。
Neural Netw. 2018 Nov;107:48-60. doi: 10.1016/j.neunet.2018.07.018. Epub 2018 Aug 13.
4
Flexible resonance in prefrontal networks with strong feedback inhibition.具有强反馈抑制的前额叶网络中的柔性共振。
PLoS Comput Biol. 2018 Aug 9;14(8):e1006357. doi: 10.1371/journal.pcbi.1006357. eCollection 2018 Aug.
5
DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.DynaSim:用于神经建模与仿真的MATLAB工具箱。
Front Neuroinform. 2018 Mar 15;12:10. doi: 10.3389/fninf.2018.00010. eCollection 2018.
6
A network model of behavioural performance in a rule learning task.在规则学习任务中行为表现的网络模型。
Philos Trans R Soc Lond B Biol Sci. 2018 Apr 19;373(1744). doi: 10.1098/rstb.2017.0275.
9
Learning and transfer of working memory gating policies.工作记忆门控策略的学习和迁移。
Cognition. 2018 Mar;172:89-100. doi: 10.1016/j.cognition.2017.12.001. Epub 2017 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验