Mierzejewski Marcin, Vidmar Lev
Department of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia.
Phys Rev Lett. 2020 Jan 31;124(4):040603. doi: 10.1103/PhysRevLett.124.040603.
Even though the eigenstate thermalization hypothesis (ETH) may be introduced as an extension of the random matrix theory, physical Hamiltonians and observables differ from random operators. One of the challenges is to embed local integrals of motion (LIOMs) within the ETH. Here we make steps towards a unified treatment of the ETH in integrable and nonintegrable models with translational invariance. Specifically, we focus on the impact of LIOMs on the fluctuations and structure of the diagonal matrix elements of local observables. We first show that nonvanishing fluctuations entail the presence of LIOMs. Then we introduce a generic protocol to construct observables, subtracted by their projections on LIOMs as well as products of LIOMs. The protocol systematically reduces fluctuations and/or the structure of the diagonal matrix elements. We verify our arguments by numerical results for integrable and nonintegrable models.
尽管本征态热化假说(ETH)可以作为随机矩阵理论的扩展引入,但物理哈密顿量和可观测量与随机算符不同。其中一个挑战是将局域运动积分(LIOMs)纳入ETH。在这里,我们朝着在具有平移不变性的可积和不可积模型中统一处理ETH迈出了步伐。具体而言,我们关注LIOMs对局部可观测量对角矩阵元的涨落和结构的影响。我们首先表明,非零涨落意味着LIOMs的存在。然后,我们引入一种通用方法来构造可观测量,减去它们在LIOMs上的投影以及LIOMs的乘积。该方法系统地降低了对角矩阵元的涨落和/或结构。我们通过可积和不可积模型的数值结果验证了我们的论点。